Load Flow Analysis of an Uncertain System in the Presence of Renewable Energy Sources Using Complex Affine Arithmetic

2017 ◽  
Vol 10 (4) ◽  
pp. 28
Author(s):  
ABEBE YOSEPH MEKONNEN ◽  
RAO P. MALLIKARJUNA ◽  
NAIK M. GOPICHAND ◽  
◽  
◽  
...  
2020 ◽  
Vol 39 (1) ◽  
pp. 228-237
Author(s):  
I.B. Anichebe ◽  
A.O. Ekwue

Frequent blackouts and unstable supply of electricity show that the  voltage instability problem has been one of the major challenges facing the power system network in Nigeria. This study investigates the voltage stability analysis of the Nigerian power network in the presence of renewable energy sources; FACTS device is used as a voltage controller. A 330kV, 28-bus power system network was studied using the PSS/E software-based Newton-Raphson load-flow technique. The results show that 10 out of the 28 buses had voltages lying below the statutory limit of 0.95 ≤ 1.05 p.u. The application of STATCOM and DFIG devices on two of the weakest buses restored the voltages to acceptable statutory limits. The total active and reactive power losses were reduced to 18.76% and 18.82% respectively. Keywords: Voltage stability analysis; Integration of renewable energy sources; FACTS controllers, Reactive Power, Power Flow.


Author(s):  
Taufik ◽  
Matthew A. Guevara ◽  
Ali Shaban ◽  
Ahmad Nafisi

Microgrids-miniature versions of the electrical grid are becoming increasingly more popular as advancements in technologies, renewable energy mandates, and decreased costs drive communities to adopt them. The modern microgrid has capabilities of generating, distributing, and regulating the flow of electricity, capable of operating in both grid-connected and islanded (disconnected) conditions. This paper utilizes ETAP software in the analysis, simulation, and development of a lab-scale microgrid located at Cal Poly State University. Microprocessor-based relays are heavily utilized in both the ETAP model and hardware implementation of the system. Three case studies were studied and simulated to investigate electric power system load flow analysis of the Cal Poly microgrid. Results were compared against hardware test measurements and showed overall agreement. Slight discrepancies were observed in the simulation results due mainly to the non-ideality of actual hardware components and lab equipment.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3795 ◽  
Author(s):  
Julia Vopava ◽  
Ulrich Bergmann ◽  
Thomas Kienberger

To reduce CO2 emissions, it is necessary to cover the increasing energy demand of e-mobility with renewable energy sources. Therefore, the influence of increasing e-mobility and synergy effects between e-mobility and renewable energy sources need to be investigated. The case study presented here shows results from the analysis of grid-side and energetic synergy effects between e-mobility charged only at work and photovoltaic (PV) potentials. The basis of the grid study is a simplified cell-based grid model. Following the determination of synthetic charging profiles for e-mobility, PV potential profiles, load and production profiles, we perform load flow calculations for different scenarios and a simulation period of one year using the grid model. After the grid study, the energy analyses are carried out using four key performance indicators. The grid study shows that line overloads caused by PV production are only reduced and not avoided by increasing e-mobility and vice versa. The increase in the power peak of e-mobility, by shifting the charging processes into the peak of PV potentials, leads to a reduction of the production surplus in summer, while in winter the line utilisation increases. By modelling PV potentials on real irradiation and temperature data, the investigation of key performance indicators can identify not only seasonal fluctuations but also daily fluctuations.


Sign in / Sign up

Export Citation Format

Share Document