SILICONE REINFORCED BY NYLON FIBERS UNDER SIMPLE SHEAR FOR EMULATING BIOLOGICAL TISSUES

Author(s):  
RENATO PENHA FARIA ◽  
Luiz Nunes ◽  
Carolina Seixas Moreira
Author(s):  
Cornelius O. Horgan ◽  
Jeremiah G. Murphy

Shearing is induced in soft tissues in numerous physiological settings. The limited experimental data available suggest that a severe strain-stiffening effect occurs in the shear stress when soft biological tissues are subjected to simple shear in certain directions. This occurs at relatively small amounts of shear (when compared with the simple shear of rubbers). This effect is modelled within the framework of nonlinear elasticity by consideration of a class of incompressible anisotropic materials. Owing to the large stresses generated for relatively small amounts of shear, particular care must be exercised in order to maintain a homogeneous deformation state in the bulk of the specimen. The results obtained are relevant to the development of accurate shear test protocols for the determination of constitutive properties of soft tissues. It is also demonstrated that there is a fundamental ambiguity in determining the normal stresses in simple shear when soft tissues are modelled as incompressible hyperelastic materials owing to the arbitrary nature of the hydrostatic pressure term. Two physically well-motivated approaches to determining the pressure are presented here, and the resulting hydrostatic stresses are compared and contrasted. The possible generation of cavitational damage owing to critical hydrostatic stress levels is briefly discussed.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
William H. Massover

Stereoscopic examination of thick sections of fixed and embedded biological tissues by high voltage electron microscopy has been shown to allow direct visualization of three-dimensional fine structure. The present report will consider the occurrence of some new technical problems in specimen preparation and Image interpretation that are not common during lower voltage studies of thin sections.Thick Sectioning and Tissue Coloration - Epon sections of 0.5 μm or more that are cut with glass knives do not have a uniform thickness as Judged by their interference colors; these colors change with time during their flotation on the knife bath, and again when drying onto the specimen support. Quoted thicknesses thus must be considered only as rough estimates unless measured in specific regions by other methods. Chloroform vapors do not always result in good spreading of thick sections; however, they will spread spontaneously to large degrees after resting on the flotation bath for several minutes. Ribbons of thick sections have been almost impossible to obtain.


Author(s):  
C.A. Baechler ◽  
W. C. Pitchford ◽  
J. M. Riddle ◽  
C.B. Boyd ◽  
H. Kanagawa ◽  
...  

Preservation of the topographic ultrastructure of soft biological tissues for examination by scanning electron microscopy has been accomplished in the past by using lengthy epoxy infiltration techniques, or dehydration in ethanol or acetone followed by air drying. Since the former technique requires several days of preparation and the latter technique subjects the tissues to great stress during the phase change encountered during air-drying, an alternate rapid, economical, and reliable method of surface structure preservation was developed. Turnbill and Philpott had used a fluorocarbon for the critical point drying of soft tissues and indicated the advantages of working with fluids having both moderately low critical pressures as well as low critical temperatures. Freon-116 (duPont) which has a critical temperature of 19. 7 C and a critical pressure of 432 psi was used in this study.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020177
Author(s):  
Daniela Dominica Porcino ◽  
Theodoros Triantafyllidis ◽  
Torsten Wichtmann ◽  
Giuseppe Tomasello

2014 ◽  
Vol 59 (12) ◽  
pp. 1149-1154
Author(s):  
A.D. Mamuta ◽  
◽  
V.S. Voitsekhovich ◽  
N.M. Kachalova ◽  
L.F. Golovko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document