Vibration suppression of strongly nonlinear structure by means of nonlinear switching shunt circuits

Author(s):  
Carlos De Marqui Junior ◽  
Tarcisio Marinelli Pereira Silva
Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 115
Author(s):  
Fengling Zhang ◽  
Jiuzhou Liu ◽  
Jing Tian

In this paper, a method to suppress the vibration of a double-beam system with nonlinear synchronized switch damping on the inductor via a network (SSDI-net) is proposed. Unlike the classical linear piezoelectric shunt damping, SSDI-net is a nonlinear piezoelectric damping. A double-beam system with SSDI-net was simplified to a lumped parameter electromechanical coupling model and analyzed by using the multi-harmonic balance method, at first with alternating frequency–time techniques (MHBM/AFT). Then, a new lower-power autonomous switching control circuit board was designed, based on SSD technique, and vibration control experiments using a double-beam system with an SSDI network are conducted, to verify the validity of the proposed analysis method and its calculation results. The nonlinear switching piezoelectric network proposed in this article can increase the voltage inversion factor. Furthermore, future applications of this switching piezoelectric network technology in the vibration suppression of bladed-disk structures in aero engines can reduce the number of switches by at least half and obtain almost the same damping effect.


2019 ◽  
Vol 30 (7) ◽  
pp. 965-976 ◽  
Author(s):  
Tarcisio Silva ◽  
David Tan ◽  
Carlos De Marqui ◽  
Alper Erturk

We study the suppression of strongly nonlinear vibrations of a flexible structure by using nonlinear switching circuit techniques, namely the synchronized switch damping on short circuit and the synchronized switch damping on inductor circuit, as well as energy harvesting implications through the synchronized switch harvesting on inductor circuit combined with the same nonlinear structure. Nonlinear switching shunts have been mostly explored for suppressing linear resonance in flexible structures. However, such flexible structures can easily undergo undesired resonant bifurcations and exhibit co-existing large- and small-amplitude branches in their frequency response. In this work, we investigate a strongly nonlinear and weakly coupled flexible structure for suppressing its large-amplitude periodic response branch under primary resonance excitation. The synchronized switch damping on short circuit and synchronized switch damping on inductor circuit damping techniques are employed and compared with the baseline (near short circuit) frequency response. It is shown that the synchronized switch damping on inductor circuit can substantially reduce the large-amplitude branch, offering the possibility of entirely suppressing undesired bifurcations. Energy harvesting implications are also explored by using the same structure as a wideband energy harvester. While the harvested power can be boosted with a synchronized switch harvesting on inductor circuit, the large-amplitude branch of the harvester is significantly shortened due to the strong shunt damping effect as a trade-off.


2009 ◽  
Vol 129 (10) ◽  
pp. 981-988 ◽  
Author(s):  
Noriaki Hirose ◽  
Makoto Iwasaki ◽  
Motohiro Kawafuku ◽  
Hiromu Hirai

2019 ◽  
Vol 139 (10) ◽  
pp. 847-853
Author(s):  
Yasufumi Yoshiura ◽  
Yusuke Asai ◽  
Yasuhiko Kaku

Sign in / Sign up

Export Citation Format

Share Document