scholarly journals Vibration attenuation in a nonlinear flexible structure via nonlinear switching circuits and energy harvesting implications

2019 ◽  
Vol 30 (7) ◽  
pp. 965-976 ◽  
Author(s):  
Tarcisio Silva ◽  
David Tan ◽  
Carlos De Marqui ◽  
Alper Erturk

We study the suppression of strongly nonlinear vibrations of a flexible structure by using nonlinear switching circuit techniques, namely the synchronized switch damping on short circuit and the synchronized switch damping on inductor circuit, as well as energy harvesting implications through the synchronized switch harvesting on inductor circuit combined with the same nonlinear structure. Nonlinear switching shunts have been mostly explored for suppressing linear resonance in flexible structures. However, such flexible structures can easily undergo undesired resonant bifurcations and exhibit co-existing large- and small-amplitude branches in their frequency response. In this work, we investigate a strongly nonlinear and weakly coupled flexible structure for suppressing its large-amplitude periodic response branch under primary resonance excitation. The synchronized switch damping on short circuit and synchronized switch damping on inductor circuit damping techniques are employed and compared with the baseline (near short circuit) frequency response. It is shown that the synchronized switch damping on inductor circuit can substantially reduce the large-amplitude branch, offering the possibility of entirely suppressing undesired bifurcations. Energy harvesting implications are also explored by using the same structure as a wideband energy harvester. While the harvested power can be boosted with a synchronized switch harvesting on inductor circuit, the large-amplitude branch of the harvester is significantly shortened due to the strong shunt damping effect as a trade-off.

Author(s):  
Tarcisio Silva ◽  
David Tan ◽  
Carlos De Marqui ◽  
Alper Erturk

We explore the suppression of geometrically nonlinear vibrations of a flexible structure by using nonlinear switching shunt damping circuits, namely the Synchronized Switch Damping on Short (SSDS) circuit and the Synchronized Switch Damping on Inductor (SSDI) circuit. Following the early research on linear shunt circuits, the use of nonlinear switching shunts was explored for damping of linear resonance behavior of flexible structures in the early 2000s. However, such flexible structures can easily undergo undesired bifurcations and exhibit large-amplitude nonlinear oscillations that coexist with small oscillations in their frequency response. Suppression of such nonlinear vibrations and resulting bifurcations with linear resistive-inductive circuits is impractical due to extremely large inductance requirements. In the present work, the focus is placed on a strongly nonlinear and weakly coupled flexible structure for suppressing its large-amplitude periodic response branch resulting from saddle-node bifurcations. The Duffing-like structure of interest exhibits nonlinear hardening behavior of predominantly cubic stiffness under primary resonance excitation. Purely resistive linear shunting, SSDS, and SSDI damping techniques are employed and compared with the baseline (near short-circuit) frequency response curves (up- and down-sweep) of the nonlinear structure. Specifically it is shown that the SSDI circuit can substantially reduce the large-amplitude branch, offering the possibility of entirely suppressing undesired large-amplitude bifurcations of the nonlinear system up to certain excitation levels in order to achieve low-amplitude single-valued frequency response. Coupled nonlinear modeling, numerical simulations, and experimental validations are presented.


2016 ◽  
Vol 28 (4) ◽  
pp. 468-487 ◽  
Author(s):  
Kevin Remick ◽  
D Dane Quinn ◽  
D Michael McFarland ◽  
Lawrence Bergman ◽  
Alexander Vakakis

The work in this study explores the excitation of high-frequency dynamic instabilities to enhance the performance of a strongly nonlinear vibration-based energy harvesting system subject to repeated impulsive excitations. These high-fraequency instabilities arise from transient resonance captures (TRCs) in the damped dynamics of the system, leading to large-amplitude oscillations in the mechanical system. Under proper forcing conditions, these high-frequency instabilities can be sustained. The primary system is composed of a grounded, weakly damped linear oscillator, which is directly subjected to impulsive forcing. A light-weight, damped nonlinear oscillator (nonlinear energy sink, NES) is coupled to the primary system using electromechanical coupling elements and strongly nonlinear stiffness elements. The essential (nonlinearizable) stiffness nonlinearity arises from geometric and kinematic effects resulting from the traverse deflection of a piano wire coupling the two oscillators. The electromechanical coupling is composed of a neodymium magnet and inductance coil, which harvests the energy in the mechanical system and transfers it to the electrical system which, in this present case, is composed of a simple resistive element. The energy dissipated in the circuit is inferred as a measure of energy harvesting capability. The large-amplitude TRCs result in strong, nearly irreversible energy transfer from the primary system to the NES, where the harvesting elements work to convert the mechanical energy to electrical energy. The primary goal of this work is to numerically and experimentally demonstrate the efficacy of inducing sustained high-frequency dynamic instability in a system of mechanical oscillators to achieve enhanced vibration energy harvesting performance. This work is a continuation of a companion paper (Remick K, Quinn D, McFarland D, et al. (2015) Journal of Sound and Vibration Final Publication) where vibration energy harvesting of the same system subject to single impulsive excitation is studied.


Author(s):  
D. X. Cao ◽  
S. Leadenham ◽  
A. Erturk

The transformation of waste vibration energy into low-power electricity has been heavily researched to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several researchers in an effort to enhance the frequency bandwidth of operation. Linear two degree of freedom (2-DOF) configurations as well as combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling is introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore the primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as time-domain numerical solutions reveal that 2-DOF configuration with quadratic and two-to-one internal resonance could extend the bandwidth enhancement capability. Both electrical power and shunted vibration frequency response curves of steady-state solutions are explored in detail. Effects of various electromechanical system parameters, such as piezoelectric coupling and load resistance, on the overall dynamics of the internal resonance energy harvesting system are reported.


Author(s):  
Ali H. Nayfeh ◽  
Mohammad I. Younis

We present analysis of the global dynamics of electrically actuated microbeams under subharmonic excitation. The microbeams are excited by a DC electrostatic force and an AC harmonic force with a frequency tuned near twice their fundamental natural frequencies. We show that the dynamic pull-in instability can occur in this case for an electric load much lower than that predicted with static analysis and the same order-of-magnitude as that predicted in the case of primary-resonance excitation. We show that, once the subharmonic resonance is activated, all frequency-response curves reach pull-in, regardless of the magnitude of the AC forcing. Our results show a limited influence of the quality factor on the frequency response. This result and the fact that the frequency-response curves have very steep passband-to-stopband transitions make the combination of a DC voltage and a subhormonic of order one-half a promising candidate for designing improved high-sensitive RF MEMS filters.


Author(s):  
Kiran Singh ◽  
Sébastien Michelin ◽  
Emmanuel De Langre

The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced-order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping, and the slender structure under investigation lies in a moderate fluid loading range, for which the flexible structure may be destabilized by damping. The key goal of this work is to analyse the effect of damping distribution and intensity on the amount of energy harvested by the system. The numerical results indeed suggest that non-uniform damping distributions may significantly improve the power-harvesting capacity of the system. For low-damping levels, clustered dampers at the position of peak curvature are shown to be optimal. Conversely for higher damping, harvesters distributed over the whole structure are more effective.


2018 ◽  
Vol 86 (2) ◽  
Author(s):  
Xiao-Ye Mao ◽  
Hu Ding ◽  
Li-Qun Chen

A new kind of nonlinear energy sink (NES) is proposed to control the vibration of a flexible structure with simply supported boundaries in the present work. The new kind of absorber is assembled at the end of structures and absorbs energy through the rotation angle at the end of the structure. It is easy to design and attached to the support of flexible structures. The structure and the absorber are coupled just with a nonlinear restoring moment and the damper in the absorber acts on the structure indirectly. In this way, all the linear characters of the flexible structure will not be changed. The system is investigated by a special perturbation method and verified by simulation. Parameters of the absorber are fully discussed to optimize the efficiency of it. For the resonance, the maximum motion is restrained up to 90% by the optimized absorber. For the impulse, the vibration of the structure could attenuate rapidly. In addition to the high efficiency, energy transmits to the absorber uniaxially. For the high efficiency, convenience of installation and the immutability of linear characters, the new kind of rotating absorber provides a very good strategy for the vibration control.


Sign in / Sign up

Export Citation Format

Share Document