NUMERICAL ANALYSIS OF FUEL SPRAY ANGLE ON THE OPERATING PARAMETERS IN A LOCOMOTIVE DIESEL ENGINE

Author(s):  
John Adilson Henschel Junior ◽  
Leonel R Cancino
2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Fenlian Huang ◽  
Jilin Lei ◽  
Qianfan Xin

Abstract This paper investigates the operating characteristics of an off-road diesel engine to enhance its power performance in plateau. First, the impacts of altitude on the power, fuel economy, and emissions characteristics were analyzed by a bench test. Second, the combustion and overall performance working at different altitudes were studied by three-dimensional numerical simulation, including the relationship between fuel injection parameters and engine performance. The results showed that altitude significantly affects the performance of the off-road diesel engine. As the altitude increased from 0 m to 2000 m, the engine power decreased as much as 4.3%, and the brake-specific fuel consumption (BSFC) increased as much as 6%. At the peak torque condition, the intake manifold boost pressure and the exhaust manifold pressure both reduced with a rise of altitude, while the intake and exhaust manifold temperatures both increased with a rise of altitude. Finally, after comparing the in-cylinder flow conditions and combustion characteristics given by six combustion chamber designs that have different shrinkage ratios, the engine performance at 4000 m altitude with five different fuel spray angles were further optimized. The engine rated power increased by 8.2% when the shrinkage ratio was 7.28% and the fuel spray angle was 150 deg at the 4000 m altitude.


2016 ◽  
Vol 9 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Raouf Mobasheri

Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.


1959 ◽  
Vol 25 (156) ◽  
pp. 820-826 ◽  
Author(s):  
Yutaro WAKURI ◽  
Masaru FUJII ◽  
Tatsuo AMITANI ◽  
Reijiro TSUNEYA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document