scholarly journals From Hilbert proofs to consecutions and back

2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Tore Fjetland Øgaard

Restall set forth a "consecution" calculus in his An Introduction to Substructural Logics. This is a natural deduction type sequent calculus where the structural rules play an important role.  This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the calculus so as to validate the metainferential rule of reasoning by cases, as well as certain theory-dependent rules.

2021 ◽  
Vol 43 (2) ◽  
pp. 1-55
Author(s):  
Bernardo Toninho ◽  
Nobuko Yoshida

This work exploits the logical foundation of session types to determine what kind of type discipline for the Λ-calculus can exactly capture, and is captured by, Λ-calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session π-calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the Λ-calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 115 ◽  
Author(s):  
Joanna Golińska-Pilarek ◽  
Magdalena Welle

We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper.


1998 ◽  
Vol 63 (3) ◽  
pp. 831-859 ◽  
Author(s):  
A. Avron

AbstractWe show that the elimination rule for the multiplicative (or intensional) conjunction Λ is admissible in many important multiplicative substructural logics. These include LLm (the multiplicative fragment of Linear Logic) and RMIm (the system obtained from LLm by adding the contraction axiom and its converse, the mingle axiom.) An exception is Rm (the intensional fragment of the relevance logic R, which is LLm together with the contraction axiom). Let SLLm and SRm be, respectively, the systems which are obtained from LLm and Rm by adding this rule as a new rule of inference. The set of theorems of SRm is a proper extension of that of Rm, but a proper subset of the set of theorems of RMIm. Hence it still has the variable-sharing property. SRm has also the interesting property that classical logic has a strong translation into it. We next introduce general algebraic structures, called strong multiplicative structures, and prove strong soundness and completeness of SLLm relative to them. We show that in the framework of these structures, the addition of the weakening axiom to SLLm corresponds to the condition that there will be exactly one designated element, while the addition of the contraction axiom corresponds to the condition that there will be exactly one nondesignated element (in the first case we get the system BCKm, in the second - the system SRm). Various other systems in which multiplicative conjunction functions as a true conjunction are studied, together with their algebraic counterparts.


Author(s):  
Giulia Battilotti

The author discusses the problem of symmetry, namely of the orientation of the logical consequence. The author shows that the problem is surprisingly entangled with the problem of “being infinite”. The author presents a model based on quantum states and shows that it features satisfy the requirements of the symmetric mode of Bi-logic, a logic introduced in the '70s by the psychoanalyst I. Matte Blanco to describe the logic of the unconscious. The author discusess symmetry, in the model, to include correlations, in order to obtain a possible approach to displacement. In this setting, the author finds a possible reading of the structural rules of sequent calculus, whose role in computation, on one side, and in the representation of human reasoning, on the other, has been debated for a long time.


1977 ◽  
Vol 42 (1) ◽  
pp. 11-28 ◽  
Author(s):  
Jonathan P. Seldin

The sequent calculus formulation (L-formulation) of the theory of functionality without the rules allowing for conversion of subjects of [3, §14E6] fails because the (cut) elimination theorem (ET) fails. This can be most easily seen by the fact that it is easy to prove in the systemandbut not (as is obvious if α is an atomic type [an F-simple])The error in the “proof” of ET in [14, §3E6], [3, §14E6], and [7, §9C] occurs in Stage 3, where it is implicitly assumed that if [x]X ≡ [x] Y then X ≡ Y. In the above counterexample, we have [x]x ≡ ∣ ≡ [x](∣x) but x ≢ ∣x. Since the formulation of [2, §9F] is not really satisfactory (for reasons stated in [3, §14E]), a new seguent calculus formulation is needed for the case in which the rules for subject conversions are not present. The main part of this paper is devoted to presenting such a formulation and proving it equivalent to the natural deduction formulation (T-formulation). The paper will conclude in §6 with some remarks on the result that every ob (term) with a type (functional character) has a normal form.The conventions and definitions of [3], especially of §12D and Chapter 14, will be used throughout the paper.


2007 ◽  
Vol 15 (3) ◽  
pp. 211-232 ◽  
Author(s):  
E. Zimmermann

2008 ◽  
Vol 14 (2) ◽  
pp. 240-257 ◽  
Author(s):  
Jan von Plato

AbstractGentzen writes in the published version of his doctoral thesis Untersuchungen über das logische Schliessen (Investigations into logical reasoning) that he was able to prove the normalization theorem only for intuitionistic natural deduction, but not for classical. To cover the latter, he developed classical sequent calculus and proved a corresponding theorem, the famous cut elimination result. Its proof was organized so that a cut elimination result for an intuitionistic sequent calculus came out as a special case, namely the one in which the sequents have at most one formula in the right, succedent part. Thus, there was no need for a direct proof of normalization for intuitionistic natural deduction. The only traces of such a proof in the published thesis are some convertibilities, such as when an implication introduction is followed by an implication elimination [1934–35, II.5.13]. It remained to Dag Prawitz in 1965 to work out a proof of normalization. Another, less known proof was given also in 1965 by Andres Raggio.We found in February 2005 an early handwritten version of Gentzen's thesis, with exactly the above title, but with rather different contents: Most remarkably, it contains a detailed proof of normalization for what became the standard system of natural deduction. The manuscript is located in the Paul Bernays collection at the ETH-Zurichwith the signum Hs. 974: 271. Bernays must have gotten it well before the time of his being expelled from Göttingen on the basis of the racial laws in April 1933.


2015 ◽  
Vol 12 (4) ◽  
Author(s):  
Takuro Onishi

We present substructural negations, a family of negations (or negative modalities) classified in terms of structural rules of an extended kind of sequent calculus, display calculus. In considering the whole picture, we emphasize the duality of negation. Two types of negative modality, impossibility and unnecessity, are discussed and "self-dual" negations like Classical, De Morgan, or Ockham negation are redefined as the fusions of two negative modalities. We also consider how to identify, using intuitionistic and dual intuitionistic negations, two accessibility relations associated with impossibility and unnecessity.


Sign in / Sign up

Export Citation Format

Share Document