scholarly journals Born at the right time? A conceptual framework linking reproduction, development, and settlement in reef fish

2020 ◽  
Author(s):  
Jeffrey Shima ◽  
EG Noonburg ◽  
SE Swearer ◽  
SH Alonzo ◽  
CW Osenberg

© 2017 by the Ecological Society of America Parents are expected to make decisions about reproductive timing and investment that maximize their own fitness, even if this does not maximize the fitness of each individual offspring. When offspring survival is uncertain, selection typically favors iteroparity, which means that offspring born at some times can be disadvantaged, while others get lucky. The eventual fate of offspring may be further modified by their own decisions. Are fates of offspring set by birthdates (i.e., determined by parents), or can offspring improve upon the cards they've been dealt? If so, do we see adaptive plasticity in the developmental timing of offspring? We evaluate these questions for a coral reef fish (the sixbar wrasse, Thalassoma hardwicke) that is characterized by extreme iteroparity and flexible larval development. Specifically, we monitored larval settlement to 192 small reefs over 11 lunar months and found that most fish settled during new moons of a lunar cycle (consistent with preferential settlement on dark nights). Settlement was significantly lower than expected by chance during the full moon and last quarter of the lunar cycle (consistent with avoidance of bright nights). Survival after settlement was greatest for fish that settled during times of decreasing lunar illumination (from last quarter to new moon). Fish that settled on the last quarter of the lunar cycle were ~10% larger than fish that settled during other periods, suggesting larvae delay settlement to avoid the full moon. These results are consistent with a numerical model that predicts plasticity in larval development time that enables avoidance of settlement during bright periods. Collectively, our results suggest that fish with inauspicious birthdates may alter their developmental trajectories to settle at better times. We speculate that such interactions between parent and offspring strategies may reinforce the evolution of extreme iteroparity and drive population dynamics, by increasing the survival of offspring born at the “wrong” time by allowing them to avoid the riskiest times of settlement.

2020 ◽  
Author(s):  
Jeffrey Shima ◽  
EG Noonburg ◽  
SE Swearer ◽  
SH Alonzo ◽  
CW Osenberg

© 2017 by the Ecological Society of America Parents are expected to make decisions about reproductive timing and investment that maximize their own fitness, even if this does not maximize the fitness of each individual offspring. When offspring survival is uncertain, selection typically favors iteroparity, which means that offspring born at some times can be disadvantaged, while others get lucky. The eventual fate of offspring may be further modified by their own decisions. Are fates of offspring set by birthdates (i.e., determined by parents), or can offspring improve upon the cards they've been dealt? If so, do we see adaptive plasticity in the developmental timing of offspring? We evaluate these questions for a coral reef fish (the sixbar wrasse, Thalassoma hardwicke) that is characterized by extreme iteroparity and flexible larval development. Specifically, we monitored larval settlement to 192 small reefs over 11 lunar months and found that most fish settled during new moons of a lunar cycle (consistent with preferential settlement on dark nights). Settlement was significantly lower than expected by chance during the full moon and last quarter of the lunar cycle (consistent with avoidance of bright nights). Survival after settlement was greatest for fish that settled during times of decreasing lunar illumination (from last quarter to new moon). Fish that settled on the last quarter of the lunar cycle were ~10% larger than fish that settled during other periods, suggesting larvae delay settlement to avoid the full moon. These results are consistent with a numerical model that predicts plasticity in larval development time that enables avoidance of settlement during bright periods. Collectively, our results suggest that fish with inauspicious birthdates may alter their developmental trajectories to settle at better times. We speculate that such interactions between parent and offspring strategies may reinforce the evolution of extreme iteroparity and drive population dynamics, by increasing the survival of offspring born at the “wrong” time by allowing them to avoid the riskiest times of settlement.


2020 ◽  
Author(s):  
Jeffrey Shima ◽  
CW Osenberg ◽  
SH Alonzo ◽  
EG Noonburg ◽  
P Mitterwallner ◽  
...  

© 2020 by the Ecological Society of America Most organisms reproduce in a dynamic environment, and life-history theory predicts that this can favor the evolution of strategies that capitalize on good times and avoid bad times. When offspring experience these environmental changes, fitness can depend strongly upon environmental conditions at birth and at later life stages. Consequently, fitness will be influenced by the reproductive decisions of parents (i.e., birth date effects) and developmental decisions (e.g., adaptive plasticity) of their offspring. We explored the consequences of these decisions using a highly iteroparous coral reef fish (the sixbar wrasse, Thalassoma hardwicke) and in a system where both parental and offspring environments vary with the lunar cycle. We tested the hypotheses that (1) reproductive patterns and offspring survival vary across the lunar cycle and (2) offspring exhibit adaptive plasticity in development time. We evaluated temporal variation in egg production from February to June 2017, and corresponding larval developmental histories (inferred from otolith microstructure) of successful settlers and surviving juveniles that were spawned during that same period. We documented lunar-cyclic variation in egg production (most eggs were spawned at the new moon). This pattern was at odds with the distribution of birth dates of settlers and surviving juveniles—most individuals that successfully survived to settlement and older stages were born during the full moon. Consequently, the probability of survival across the larval stage was greatest for offspring born close to the full moon, when egg production was at its lowest. Offspring also exhibited plasticity in developmental duration, adjusting their age at settlement to settle during darker portions of the lunar cycle than expected given their birth date. Offspring born near the new moon tended to be older and larger at settlement, and these traits conveyed a strong fitness advantage (i.e., a carryover effect) through to adulthood. We speculate that these effects (1) are shaped by a dynamic landscape of risk and reward determined by moonlight, which differentially influences adults and offspring, and (2) can explain the evolution of extreme iteroparity in sixbars.


2020 ◽  
Author(s):  
Jeffrey Shima ◽  
CW Osenberg ◽  
SH Alonzo ◽  
EG Noonburg ◽  
P Mitterwallner ◽  
...  

© 2020 by the Ecological Society of America Most organisms reproduce in a dynamic environment, and life-history theory predicts that this can favor the evolution of strategies that capitalize on good times and avoid bad times. When offspring experience these environmental changes, fitness can depend strongly upon environmental conditions at birth and at later life stages. Consequently, fitness will be influenced by the reproductive decisions of parents (i.e., birth date effects) and developmental decisions (e.g., adaptive plasticity) of their offspring. We explored the consequences of these decisions using a highly iteroparous coral reef fish (the sixbar wrasse, Thalassoma hardwicke) and in a system where both parental and offspring environments vary with the lunar cycle. We tested the hypotheses that (1) reproductive patterns and offspring survival vary across the lunar cycle and (2) offspring exhibit adaptive plasticity in development time. We evaluated temporal variation in egg production from February to June 2017, and corresponding larval developmental histories (inferred from otolith microstructure) of successful settlers and surviving juveniles that were spawned during that same period. We documented lunar-cyclic variation in egg production (most eggs were spawned at the new moon). This pattern was at odds with the distribution of birth dates of settlers and surviving juveniles—most individuals that successfully survived to settlement and older stages were born during the full moon. Consequently, the probability of survival across the larval stage was greatest for offspring born close to the full moon, when egg production was at its lowest. Offspring also exhibited plasticity in developmental duration, adjusting their age at settlement to settle during darker portions of the lunar cycle than expected given their birth date. Offspring born near the new moon tended to be older and larger at settlement, and these traits conveyed a strong fitness advantage (i.e., a carryover effect) through to adulthood. We speculate that these effects (1) are shaped by a dynamic landscape of risk and reward determined by moonlight, which differentially influences adults and offspring, and (2) can explain the evolution of extreme iteroparity in sixbars.


2020 ◽  
Author(s):  
Jeffrey Shima

Multiple processes typically influence patterns of abundance. Despite this widely accepted view, many studies continue to approach ecological questions from a single-factor, or, at most, a two-factor perspective. Here, I evaluate the consequences of considering, separately and jointly, the effects of three factors (larval settlement, reef resources, and postsettlement losses) on spatial patterns of abundance of a marine reef fish, the six bar wrasse (Thalassoma hardwicke). Using correlational methods commonly employed in single-factor studies, I show that local patterns of abundance of juvenile wrasse could be attributed entirely to either (1) patterns of abundance of settlement habitat, or (2) patterns of larval settlement. This result occurred because habitat and presumed larval delivery covaried in space. I manipulated abundance of settlement habitat in a field experiment to uncouple this covariation and found subsequent settlement to be simultaneously influenced by both factors. However, joint effects of habitat and settlement failed to account for patterns of abundance of juvenile wrasse without also considering a third factor - postsettlement losses - which were density-dependent and substantially modified patterns of settlement. These results illustrate (1) how multifactorial explanations may be falsely refuted when incomplete sets of multiple factors are considered, and (2) how single-factor explanations may misrepresent underlying multifactorial causation of ecological patterns. Uncovering the interactive role of multiple factors in determining ecological patterns of interest requires a shift from single-factor approaches to more pluralistic perspectives.


2020 ◽  
Author(s):  
Jeffrey Shima

Multiple processes typically influence patterns of abundance. Despite this widely accepted view, many studies continue to approach ecological questions from a single-factor, or, at most, a two-factor perspective. Here, I evaluate the consequences of considering, separately and jointly, the effects of three factors (larval settlement, reef resources, and postsettlement losses) on spatial patterns of abundance of a marine reef fish, the six bar wrasse (Thalassoma hardwicke). Using correlational methods commonly employed in single-factor studies, I show that local patterns of abundance of juvenile wrasse could be attributed entirely to either (1) patterns of abundance of settlement habitat, or (2) patterns of larval settlement. This result occurred because habitat and presumed larval delivery covaried in space. I manipulated abundance of settlement habitat in a field experiment to uncouple this covariation and found subsequent settlement to be simultaneously influenced by both factors. However, joint effects of habitat and settlement failed to account for patterns of abundance of juvenile wrasse without also considering a third factor - postsettlement losses - which were density-dependent and substantially modified patterns of settlement. These results illustrate (1) how multifactorial explanations may be falsely refuted when incomplete sets of multiple factors are considered, and (2) how single-factor explanations may misrepresent underlying multifactorial causation of ecological patterns. Uncovering the interactive role of multiple factors in determining ecological patterns of interest requires a shift from single-factor approaches to more pluralistic perspectives.


2021 ◽  
pp. 074873042098363
Author(s):  
Alejandro A. Aguirre ◽  
Roberto A. Palomares ◽  
Aitor D. De Ondiz ◽  
Eleazar R. Soto ◽  
Mariana S. Perea ◽  
...  

Evidence has accumulated over the years indicating that the moon influences some aspects of the reproductive activity in animals and humans. However, little is known about the influence of the lunar cycle on the reproductive performance of cows under tropical conditions, where the environment strongly affects reproduction. This retrospective study was conducted with the aim of assessing the influence of the lunar cycle on some reproductive traits of tropical crossbred cows managed in a pasture-based system. Data from 5869 reproductive records from two commercial farms localized in the Maracaibo Lake Basin of Zulia State, Venezuela, were analyzed. Variables studied were first service conception rate, calving frequency, first postpartum estrous frequency, and pregnancy frequency. In addition to the lunar cycle, the effects of farm, season, and predominant breed were also considered. Data were analyzed using logistic regression and general linear model from SAS. First service conception was affected by lunar phases and predominant breed, but not by farm or season. For frequencies of calving, first postpartum estrus, and pregnancy, there was no main effect of farm, season, and predominant breed, whereas the effect of lunar phases was highly significant. First service conception was significantly greater in waning than in crescent phase of the lunar cycle. Frequencies of calving, first estrus, and pregnancy were highly correlated and showed greater figures around full moon and new moon. In conclusion, lunar cycle influenced first service conception, attaining greater values in the waning phase of the moon cycle. Frequencies of calving, first postpartum estrus, and pregnancy in crossbred cows showed a clear bimodal rhythm, whose greatest values coincided with new moon and full moon.


2021 ◽  
pp. 1-12
Author(s):  
Courtney P. Gilchrist ◽  
Deanne K. Thompson ◽  
Bonnie Alexander ◽  
Claire E. Kelly ◽  
Karli Treyvaud ◽  
...  

Abstract Background Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years. Methods MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview. Results VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0–7 years) for ICV (β = −0.461, p = 0.020), TBV (β = −0.503, p = 0.021), left (β = −0.518, p = 0.020) and right hippocampi (β = −0.469, p = 0.020) and left medial orbitofrontal cortex (β = −0.761, p = 0.020) and did not persist after adjusting for TBV and social risk. Conclusions Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.


2012 ◽  
Vol 63 (4) ◽  
pp. 312 ◽  
Author(s):  
Jason Richard How ◽  
Simon de Lestang

Acoustic telemetry systems are an increasingly common way to examine the movement and behaviour of marine organisms. However, there has been little published on the methodological and analytical work associated with this technology. We tested transmitters of differing power outputs simultaneously in several trials, some lasting ~50 days, to examine the effects of power output and environmental factors (water movement, temperature, lunar cycle and time of day). There were considerable and volatile changes in detections throughout all trials. Increased water movement and temperature significantly reduced detection rates, whereas daytime and full-moon periods had significantly higher detection rates. All nine transmitters (from seven transmitter types tested) showed a sigmoidal trend between detection frequency and distance. Higher-powered transmitters had a prolonged detection distance with near-maximal detections, whereas lower-powered transmitters showed an almost immediate decline. Variation of detection frequency, transmitter type and the modelled relationship between distance and detection frequency were incorporated into a positioning trial which resulted in markedly improved position estimates over previous techniques.


2021 ◽  
Author(s):  
◽  
Robert Paul Wolf

<p>Serpulids are a globally represented group of polychaetes and can be found in many habitats from the intertidal fringe to the subtidal environment and even in deep-sea ecosystems. These tube-dwelling worms are often described as pioneer species in new or disturbed habitats. Serpulids secrete a calcareous tube and often occur in aggregations. These patches can range from several centimetres to several metres in diameter and may even form reef systems. Accumulations of tube-dwelling worms provide a new habitat for other species and, therefore, serpulids are considered bioengineers. Serpulid aggregations are known to enhance biodiversity and species abundance and may increase water quality through their filter activity. Despite their ecological importance, their ecology and ontogeny have received little attention.  Spirobranchus cariniferus, a New Zealand endemic intertidal serpulid, is a substantial contributor to intertidal ecosystems. For this and other Serpulidae, the link between larval development and larval settlement is missing. However, this connection is essential to understand recruitment and ecology of tube-dwelling worms. Therefore, in this thesis, I describe the ontogeny of S. cariniferus from larval development to recruitment and reproduction.  In the first data chapter, I present my findings on the recruitment of S. cariniferus in the field. This serpulid settles aggregatively in the field but not necessarily in response to the presence of adult conspecifics, as has been previously reported. Abiotic factors such as sunlight or wave disturbance have a more substantial effect on recruitment rather than the occurrence of adult individuals of the same or a competing species. Additionally, this chapter provides support for the hypothesis that larvae of S. cariniferus may accumulate near the substrate before settlement.  Many sessile marine invertebrate taxa occur in either aggregations or as solitary individuals, with potential benefits and disadvantages associated with each configuration. For S. cariniferus, solitary and aggregative individuals can be found in the same habitat. Therefore, the second data chapter compares growth and mortality for individuals living alone or in aggregation. While solitary and aggregative individuals elongate their tubes at a similar rate, further correlations of body to tube sizes lead to the conclusion that solitary worms focus more of their energy on tube length growth rather than body size increment compared to aggregative conspecifics. Mortality is highly variable but does not differ between both configurations. However, individuals living in a patch have a better ability to recover from damage to their tubes.  In the last two decades, the idea that gonochorism is the general reproductive pattern for Serpulidae has been challenged, and instead it has been suggested by some that protandry is the more common trait. Therefore, with my third data chapter, I explore maturation and sex ratio of S. cariniferus and whether it changes for individuals living alone vs. in aggregation or based on size. While maturation depends on size, sex does not, and neither maturation nor sex ratio are dependent on whether individuals live in aggregation or not. Further, the ratio of females to males did not favour either sex consistently. For the first time in this species I found evidence of possible hermaphroditism. Through spawning trials and histological sections, I identified nine individuals which simultaneously contained oocytes and sperm cells. I suggest therefore, that S. cariniferus has alternating sexes rather than protandry as a reproductive strategy.  In the fourth and final data chapter, I describe the metamorphosis and settlement behaviour of S. cariniferus larvae. For this serpulid species, settlement and metamorphosis are separate and distinct steps that involve both behavioural and morphological changes to the larvae. Further, this entire process can be quite prolonged (i.e. over several days), and at some points can be reversed. It is therefore very important that observations last longer than 24–48 hours, when studying serpulid settlement.  As far as I am aware, this is the first study on a serpulid species to examine aggregative settlement in the field in relation to the presence of adult conspecifics and abiotic factors, and also to explicitly test for consequences of solitary vs. group living on growth and mortality. It is also the first to show evidence of hermaphroditism in this species. I hope my research and this thesis stimulates a more inclusive and holistic investigation of serpulids in the future. Larval development, settlement patterns and ontogeny need to be studied in detail if we want to understand the evolution, ecology, impacts and benefits of these and other sessile marine invertebrates.</p>


1996 ◽  
Vol 47 (1) ◽  
pp. 67 ◽  
Author(s):  
AJ Courtney ◽  
DJ Die ◽  
JG McGilvray

This study examined the lunar and die1 variation in catch rates and reproductive condition of adult eastern king prawns, Penaeus plebejus, in relatively deep (160 m) coastal waters off south- eastern Queensland. Females numerically dominated catches over most of the lunar cycle and constituted 76% of the weight of the catch. Analysis of variance (ANOVA) revealed an interaction between lunar phase and sex; catches peaked during Lunar Phase 3 (full moon � 3 days) and were particularly marked for males. This was the only period during the lunar cycle when the sex ratio approached 1 : 1. There was also an interaction between trawl-time and sex; male catch rates were at a minimum early in the evening, whereas female catch rates were at a maximum then and declined throughout the night. Trawler logbook catch rate data from the same area over a similar period indicated an interaction between lunar cycle and lunar phase. ANOVA revealed an effect of the interaction between phase and sex on the incidence of soft prawns; the incidence of soft males increased during Phase 4 (half moon waning to new moon � 3 days). Ovary weight also varied between phases and was higher during Phases 2 (half moon waxing to full moon � 3 days) and 4 (half moon waning to new moon � 3 days). Trends in the ovary weight and the incidence of histologically mature and ripe females suggested there are two periods of increased spawning activity during each lunar cycle. A cyclic regression fitted to the data explained 93% of the variation in the incidence of ripe females between samples. The influence of these cyclic trends in catch rate and reproductive condition should be considered when monitoring the spawning stock in the fishery and when planning sampling strategies in any future reproductive studies.


Sign in / Sign up

Export Citation Format

Share Document