scholarly journals Particle swarm optimisation for feature selection: A hybrid filter-wrapper approach

2021 ◽  
Author(s):  
T Butler-Yeoman ◽  
Bing Xue ◽  
Mengjie Zhang

© 2015 IEEE. Feature selection is an important pre-processing step, which can reduce the dimensionality of a dataset and increase the accuracy and efficiency of a learning/classification algorithm. However, existing feature selection algorithms mainly wrappers and filters have their own advantages and disadvantages. This paper proposes two filter-wrapper hybrid feature selection algorithms based on particle swarm optimisation (PSO), where the first algorithm named FastPSO combined filter and wrapper into the search process of PSO for feature selection with most of the evaluations as filters and a small number of evaluations as wrappers. The second algorithm named RapidPSO further reduced the number of wrapper evaluations. Theoretical analysis on FastPSO and RapidPSO is conducted to investigate their complexity. FastPSO and RapidPSO are compared with a pure wrapper algorithm named WrapperPSO and a pure filter algorithm named FilterPSO on nine benchmark datasets of varying difficulty. The experimental results show that both FastPSO and RapidPSO can successfully reduce the number of features and simultaneously increase the classification performance over using all features. The two proposed algorithms maintain the high classification performance achieved by WrapperPSO and significantly reduce the computational time, although the number of features is larger. At the same time, they increase the classification accuracy of FilterPSO and reduce the number of features, but increased the computational cost. FastPSO outperformed RapidPSO in terms of the classification accuracy and the number of features, but increased the computational time, which shows the trade-off between the efficiency and effectiveness. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2021 ◽  
Author(s):  
T Butler-Yeoman ◽  
Bing Xue ◽  
Mengjie Zhang

© 2015 IEEE. Feature selection is an important pre-processing step, which can reduce the dimensionality of a dataset and increase the accuracy and efficiency of a learning/classification algorithm. However, existing feature selection algorithms mainly wrappers and filters have their own advantages and disadvantages. This paper proposes two filter-wrapper hybrid feature selection algorithms based on particle swarm optimisation (PSO), where the first algorithm named FastPSO combined filter and wrapper into the search process of PSO for feature selection with most of the evaluations as filters and a small number of evaluations as wrappers. The second algorithm named RapidPSO further reduced the number of wrapper evaluations. Theoretical analysis on FastPSO and RapidPSO is conducted to investigate their complexity. FastPSO and RapidPSO are compared with a pure wrapper algorithm named WrapperPSO and a pure filter algorithm named FilterPSO on nine benchmark datasets of varying difficulty. The experimental results show that both FastPSO and RapidPSO can successfully reduce the number of features and simultaneously increase the classification performance over using all features. The two proposed algorithms maintain the high classification performance achieved by WrapperPSO and significantly reduce the computational time, although the number of features is larger. At the same time, they increase the classification accuracy of FilterPSO and reduce the number of features, but increased the computational cost. FastPSO outperformed RapidPSO in terms of the classification accuracy and the number of features, but increased the computational time, which shows the trade-off between the efficiency and effectiveness. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
B Tran ◽  
Bing Xue ◽  
Mengjie Zhang

© 1997-2012 IEEE. With a global search mechanism, particle swarm optimization (PSO) has shown promise in feature selection (FS). However, most of the current PSO-based FS methods use a fix-length representation, which is inflexible and limits the performance of PSO for FS. When applying these methods to high-dimensional data, it not only consumes a significant amount of memory but also requires a high computational cost. Overcoming this limitation enables PSO to work on data with much higher dimensionality which has become more and more popular with the advance of data collection technologies. In this paper, we propose the first variable-length PSO representation for FS, enabling particles to have different and shorter lengths, which defines smaller search space and therefore, improves the performance of PSO. By rearranging features in a descending order of their relevance, we facilitate particles with shorter lengths to achieve better classification performance. Furthermore, using the proposed length changing mechanism, PSO can jump out of local optima, further narrow the search space and focus its search on smaller and more fruitful area. These strategies enable PSO to reach better solutions in a shorter time. Results on ten high-dimensional datasets with varying difficulties show that the proposed variable-length PSO can achieve much smaller feature subsets with significantly higher classification performance in much shorter time than the fixed-length PSO methods. The proposed method also outperformed the compared non-PSO FS methods in most cases. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350024 ◽  
Author(s):  
BING XUE ◽  
LIAM CERVANTE ◽  
LIN SHANG ◽  
WILL N. BROWNE ◽  
MENGJIE ZHANG

Feature selection is a multi-objective problem with the two main conflicting objectives of minimising the number of features and maximising the classification performance. However, most existing feature selection algorithms are single objective and do not appropriately reflect the actual need. There are a small number of multi-objective feature selection algorithms, which are wrapper based and accordingly are computationally expensive and less general than filter algorithms. Evolutionary computation techniques are particularly suitable for multi-objective optimisation because they use a population of candidate solutions and are able to find multiple non-dominated solutions in a single run. However, the two well-known evolutionary multi-objective algorithms, non-dominated sorting based multi-objective genetic algorithm II (NSGAII) and strength Pareto evolutionary algorithm 2 (SPEA2) have not been applied to filter based feature selection. In this work, based on NSGAII and SPEA2, we develop two multi-objective, filter based feature selection frameworks. Four multi-objective feature selection methods are then developed by applying mutual information and entropy as two different filter evaluation criteria in each of the two proposed frameworks. The proposed multi-objective algorithms are examined and compared with a single objective method and three traditional methods (two filters and one wrapper) on eight benchmark datasets. A decision tree is employed to test the classification performance. Experimental results show that the proposed multi-objective algorithms can automatically evolve a set of non-dominated solutions that include a smaller number of features and achieve better classification performance than using all features. NSGAII and SPEA2 outperform the single objective algorithm, the two traditional filter algorithms and even the traditional wrapper algorithm in terms of both the number of features and the classification performance in most cases. NSGAII achieves similar performance to SPEA2 for the datasets that consist of a small number of features and slightly better results when the number of features is large. This work represents the first study on NSGAII and SPEA2 for filter feature selection in classification problems with both providing field leading classification performance.


2021 ◽  
Author(s):  
E Hancer ◽  
Bing Xue ◽  
D Karaboga ◽  
Mengjie Zhang

© 2015 Elsevier B.V. All rights reserved. Feature selection is the basic pre-processing task of eliminating irrelevant or redundant features through investigating complicated interactions among features in a feature set. Due to its critical role in classification and computational time, it has attracted researchers' attention for the last five decades. However, it still remains a challenge. This paper proposes a binary artificial bee colony (ABC) algorithm for the feature selection problems, which is developed by integrating evolutionary based similarity search mechanisms into an existing binary ABC variant. The performance analysis of the proposed algorithm is demonstrated by comparing it with some well-known variants of the particle swarm optimization (PSO) and ABC algorithms, including standard binary PSO, new velocity based binary PSO, quantum inspired binary PSO, discrete ABC, modification rate based ABC, angle modulated ABC, and genetic algorithms on 10 benchmark datasets. The results show that the proposed algorithm can obtain higher classification performance in both training and test sets, and can eliminate irrelevant and redundant features more effectively than the other approaches. Note that all the algorithms used in this paper except for standard binary PSO and GA are employed for the first time in feature selection.


2021 ◽  
Author(s):  
Bing Xue ◽  
Mengjie Zhang ◽  
William Browne

© 2015 Imperial College Press. Feature selection is an important data preprocessing step in machine learning and data mining, such as classification tasks. Research on feature selection has been extensively conducted for more than 50 years and different types of approaches have been proposed, which include wrapper approaches or filter approaches, and single objective approaches or multi-objective approaches. However, the advantages and disadvantages of such approaches have not been thoroughly investigated. This paper provides a comprehensive study on comparing different types of feature selection approaches, specifically including comparisons on the classification performance and computational time of wrappers and filters, generality of wrapper approaches, and comparisons on single objective and multi-objective approaches. Particle swarm optimization (PSO)-based approaches, which include different types of methods, are used as typical examples to conduct this research. A total of 10 different feature selection methods and over 7000 experiments are involved. The results show that filters are usually faster than wrappers, but wrappers using a simple classification algorithm can be faster than filters. Wrappers often achieve better classification performance than filters. Feature subsets obtained from wrappers can be general to other classification algorithms. Meanwhile, multi-objective approaches are generally better choices than single objective algorithms. The findings are not only useful for researchers to develop new approaches to addressing new challenges in feature selection, but also useful for real-world decision makers to choose a specific feature selection method according to their own requirements.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 858 ◽  
Author(s):  
Jun Liang ◽  
Liang Hou ◽  
Zhenhua Luan ◽  
Weiping Huang

Feature interaction is a newly proposed feature relevance relationship, but the unintentional removal of interactive features can result in poor classification performance for this relationship. However, traditional feature selection algorithms mainly focus on detecting relevant and redundant features while interactive features are usually ignored. To deal with this problem, feature relevance, feature redundancy and feature interaction are redefined based on information theory. Then a new feature selection algorithm named CMIFSI (Conditional Mutual Information based Feature Selection considering Interaction) is proposed in this paper, which makes use of conditional mutual information to estimate feature redundancy and interaction, respectively. To verify the effectiveness of our algorithm, empirical experiments are conducted to compare it with other several representative feature selection algorithms. The results on both synthetic and benchmark datasets indicate that our algorithm achieves better results than other methods in most cases. Further, it highlights the necessity of dealing with feature interaction.


2021 ◽  
Author(s):  
Bing Xue ◽  
Mengjie Zhang ◽  
William Browne

© 2015 Imperial College Press. Feature selection is an important data preprocessing step in machine learning and data mining, such as classification tasks. Research on feature selection has been extensively conducted for more than 50 years and different types of approaches have been proposed, which include wrapper approaches or filter approaches, and single objective approaches or multi-objective approaches. However, the advantages and disadvantages of such approaches have not been thoroughly investigated. This paper provides a comprehensive study on comparing different types of feature selection approaches, specifically including comparisons on the classification performance and computational time of wrappers and filters, generality of wrapper approaches, and comparisons on single objective and multi-objective approaches. Particle swarm optimization (PSO)-based approaches, which include different types of methods, are used as typical examples to conduct this research. A total of 10 different feature selection methods and over 7000 experiments are involved. The results show that filters are usually faster than wrappers, but wrappers using a simple classification algorithm can be faster than filters. Wrappers often achieve better classification performance than filters. Feature subsets obtained from wrappers can be general to other classification algorithms. Meanwhile, multi-objective approaches are generally better choices than single objective algorithms. The findings are not only useful for researchers to develop new approaches to addressing new challenges in feature selection, but also useful for real-world decision makers to choose a specific feature selection method according to their own requirements.


2021 ◽  
Author(s):  
◽  
Bing Xue

<p>Classification problems often have a large number of features, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the classification accuracy. Feature selection is a process of selecting a subset of relevant features, which can decrease the dimensionality, shorten the running time, and/or improve the classification accuracy. There are two types of feature selection approaches, i.e. wrapper and filter approaches. Their main difference is that wrappers use a classification algorithm to evaluate the goodness of the features during the feature selection process while filters are independent of any classification algorithm. Feature selection is a difficult task because of feature interactions and the large search space. Existing feature selection methods suffer from different problems, such as stagnation in local optima and high computational cost. Evolutionary computation (EC) techniques are well-known global search algorithms. Particle swarm optimisation (PSO) is an EC technique that is computationally less expensive and can converge faster than other methods. PSO has been successfully applied to many areas, but its potential for feature selection has not been fully investigated.  The overall goal of this thesis is to investigate and improve the capability of PSO for feature selection to select a smaller number of features and achieve similar or better classification performance than using all features.  This thesis investigates the use of PSO for both wrapper and filter, and for both single objective and multi-objective feature selection, and also investigates the differences between wrappers and filters.  This thesis proposes a new PSO based wrapper, single objective feature selection approach by developing new initialisation and updating mechanisms. The results show that by considering the number of features in the initialisation and updating procedures, the new algorithm can improve the classification performance, reduce the number of features and decrease computational time.  This thesis develops the first PSO based wrapper multi-objective feature selection approach, which aims to maximise the classification accuracy and simultaneously minimise the number of features. The results show that the proposed multi-objective algorithm can obtain more and better feature subsets than single objective algorithms, and outperform other well-known EC based multi-objective feature selection algorithms.  This thesis develops a filter, single objective feature selection approach based on PSO and information theory. Two measures are proposed to evaluate the relevance of the selected features based on each pair of features and a group of features, respectively. The results show that PSO and information based algorithms can successfully address feature selection tasks. The group based method achieves higher classification accuracies, but the pair based method is faster and selects smaller feature subsets.  This thesis proposes the first PSO based multi-objective filter feature selection approach using information based measures. This work is also the first work using other two well-known multi-objective EC algorithms in filter feature selection, which are also used to compare the performance of the PSO based approach. The results show that the PSO based multiobjective filter approach can successfully address feature selection problems, outperform single objective filter algorithms and achieve better classification performance than other multi-objective algorithms.   This thesis investigates the difference between wrapper and filter approaches in terms of the classification performance and computational time, and also examines the generality of wrappers. The results show that wrappers generally achieve better or similar classification performance than filters, but do not always need longer computational time than filters. The results also show that wrappers built with simple classification algorithms can be general to other classification algorithms.</p>


2021 ◽  
Author(s):  
◽  
Bing Xue

<p>Classification problems often have a large number of features, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the classification accuracy. Feature selection is a process of selecting a subset of relevant features, which can decrease the dimensionality, shorten the running time, and/or improve the classification accuracy. There are two types of feature selection approaches, i.e. wrapper and filter approaches. Their main difference is that wrappers use a classification algorithm to evaluate the goodness of the features during the feature selection process while filters are independent of any classification algorithm. Feature selection is a difficult task because of feature interactions and the large search space. Existing feature selection methods suffer from different problems, such as stagnation in local optima and high computational cost. Evolutionary computation (EC) techniques are well-known global search algorithms. Particle swarm optimisation (PSO) is an EC technique that is computationally less expensive and can converge faster than other methods. PSO has been successfully applied to many areas, but its potential for feature selection has not been fully investigated.  The overall goal of this thesis is to investigate and improve the capability of PSO for feature selection to select a smaller number of features and achieve similar or better classification performance than using all features.  This thesis investigates the use of PSO for both wrapper and filter, and for both single objective and multi-objective feature selection, and also investigates the differences between wrappers and filters.  This thesis proposes a new PSO based wrapper, single objective feature selection approach by developing new initialisation and updating mechanisms. The results show that by considering the number of features in the initialisation and updating procedures, the new algorithm can improve the classification performance, reduce the number of features and decrease computational time.  This thesis develops the first PSO based wrapper multi-objective feature selection approach, which aims to maximise the classification accuracy and simultaneously minimise the number of features. The results show that the proposed multi-objective algorithm can obtain more and better feature subsets than single objective algorithms, and outperform other well-known EC based multi-objective feature selection algorithms.  This thesis develops a filter, single objective feature selection approach based on PSO and information theory. Two measures are proposed to evaluate the relevance of the selected features based on each pair of features and a group of features, respectively. The results show that PSO and information based algorithms can successfully address feature selection tasks. The group based method achieves higher classification accuracies, but the pair based method is faster and selects smaller feature subsets.  This thesis proposes the first PSO based multi-objective filter feature selection approach using information based measures. This work is also the first work using other two well-known multi-objective EC algorithms in filter feature selection, which are also used to compare the performance of the PSO based approach. The results show that the PSO based multiobjective filter approach can successfully address feature selection problems, outperform single objective filter algorithms and achieve better classification performance than other multi-objective algorithms.   This thesis investigates the difference between wrapper and filter approaches in terms of the classification performance and computational time, and also examines the generality of wrappers. The results show that wrappers generally achieve better or similar classification performance than filters, but do not always need longer computational time than filters. The results also show that wrappers built with simple classification algorithms can be general to other classification algorithms.</p>


Author(s):  
Bing Xue ◽  
Mengjie Zhang ◽  
Will N. Browne

Feature selection is an important data preprocessing step in machine learning and data mining, such as classification tasks. Research on feature selection has been extensively conducted for more than 50 years and different types of approaches have been proposed, which include wrapper approaches or filter approaches, and single objective approaches or multi-objective approaches. However, the advantages and disadvantages of such approaches have not been thoroughly investigated. This paper provides a comprehensive study on comparing different types of feature selection approaches, specifically including comparisons on the classification performance and computational time of wrappers and filters, generality of wrapper approaches, and comparisons on single objective and multi-objective approaches. Particle swarm optimization (PSO)-based approaches, which include different types of methods, are used as typical examples to conduct this research. A total of 10 different feature selection methods and over 7000 experiments are involved. The results show that filters are usually faster than wrappers, but wrappers using a simple classification algorithm can be faster than filters. Wrappers often achieve better classification performance than filters. Feature subsets obtained from wrappers can be general to other classification algorithms. Meanwhile, multi-objective approaches are generally better choices than single objective algorithms. The findings are not only useful for researchers to develop new approaches to addressing new challenges in feature selection, but also useful for real-world decision makers to choose a specific feature selection method according to their own requirements.


Sign in / Sign up

Export Citation Format

Share Document