scholarly journals Climate Change in the Southern Ocean During the Middle Eocene to Early Oligocene: A Palynological Perspective

2021 ◽  
Author(s):  
◽  
Claire Andrea Storkey

<p>The Antarctic and Southern Ocean is an area that was greatly affected by climatic changes during the Middle Eocene to Early Oligocene (E/O). This study aims to document climate-induced changes of the marine palynomorphs (mostly dinoflagellate cysts) by developing a Circum-Antarctic biozonation, and establishing the distribution and effects of cooling on the palynomorph assemblages and the palaeoenvironment. Samples were obtained from four sites by the Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP) and the palynological content was analyzed. These sites were selected as they may record effects of circulation changes and cooling trends, reflecting climate changes. ODP site 696B, was inner neritic and located in the South Orkney microcontinent, Weddell Sea. The other three sites were pelagic with ODP 699A located on the Northeast Georgia Rise, Falklands, ODP 748B located in the Western part of the Raggart Basin, Kerguelen Plateau and DSDP 277 located in Cathedral Depression on the Southern Campbell Plateau. From this analysis a comprehensive record of the local climatic transitions was ascertained, utilising assemblages of fossil organic-walled dinoflagellate cysts (dinocysts), acritarchs, prasinophyte algae, microforaminiferal linings, scoledonts and terrestrial material. The establishment of a standard nannofossil biostratigraphy provided a temporal framework of the marine palynomorphs in each site. Key dinocyst datums recognised as first or last occurrences that correlated reliably between sites, were compared with the nannofossil zones of each site. The purpose was to provide a Middle Eocene/Early Oligocene dinocyst biostratigraphy that temporally constrains the assemblages. Six primary datums and two secondary datums resulted, which lead to the recognition of four biozones and established a new biozonation in the Southern Ocean. The zones identified various dinocyst events, giving an indication of their probable palaeoenvironments. The Circum-Antarctic distribution pattern of palynomorph assemblages was documented in each site as a total abundance of grains per gram. The ranges and composition of palynomorph assemblages of each site were displayed as a percentage of total abundance. To document any cooling effects the dinocysts were separated into Gonyaulacoid or Peridinioid assemblages to best illustrate their preferred palaeoenvironment. Key findings showed that the pelagic and inner neritic sites differed greatly. Site 696B was the most climatically stable site and dominated by Peridinioid dinocysts which are predominantly heterotrophic. They are most common in an inner neritic palaeoenvironment, but are also present in nutrient upwellings and eutrophic surface waters with lower sea surface temperatures. Terrestrial material dominates all marine palynomorphs in this site which was shallow and warm with few changes up to the E/O boundary ~33.7 Ma, but became more variable in the Early Oligocene. In comparison, the pelagic sites (699, 748B, 277) were unstable, with missing or condensed sediments and no palynomorphs present at differing times. They were mostly dominated by Gonyaulacoid dinocysts, which are autotrophs and generally located in outer neritic to open ocean palaeoenvironments. The non dinocysts of Prasinophyte algae and Leiosphaeridia palynomorphs appeared in higher abundances in the pelagic sites than in the inner neritic sites. Specific dinocyst markers identified temperature changes within the pelagic sites, subsequently highlighting the climatic changes that occurred during the Middle Eocene/Early Oligocene. From ~46 Ma the pelagic sites recorded conditions that were oceanic and cooler. Between ~44 - ~41.5 Ma, a warming in site 748B indicated enhanced stratification and elevated nutrient availability. This was not the case in site 696B and may be due to warm temperatures already present. From ~41.4 Ma the pelagic sites showed that the palaeoenvironment continued to cool, indicated by the presence of Leiosphaeridia and Prasinophyte algae. The palaeoenvironment was oceanic with upwelling and offshore sea surface productivity, illustrated by the Gonyaulacoid and Peridinioid dinocysts present. During the Late Eocene from ~37 Ma a transitional and changeable palaeoenvironment was shown by the high numbers of Operculodinium spp present in sites 696B and 277. From ~33.7 Ma (E/O boundary) in the pelagic sites, most Peridinioid dinocysts had disappeared and very few Gonyaulacoid dinocysts were present. In contrast the inner neritic site (696B) Peridinioid dinocysts were still dominant, and a more gradual disappearance of all the marine palynomorphs was evident.</p>

2021 ◽  
Author(s):  
◽  
Claire Andrea Storkey

<p>The Antarctic and Southern Ocean is an area that was greatly affected by climatic changes during the Middle Eocene to Early Oligocene (E/O). This study aims to document climate-induced changes of the marine palynomorphs (mostly dinoflagellate cysts) by developing a Circum-Antarctic biozonation, and establishing the distribution and effects of cooling on the palynomorph assemblages and the palaeoenvironment. Samples were obtained from four sites by the Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP) and the palynological content was analyzed. These sites were selected as they may record effects of circulation changes and cooling trends, reflecting climate changes. ODP site 696B, was inner neritic and located in the South Orkney microcontinent, Weddell Sea. The other three sites were pelagic with ODP 699A located on the Northeast Georgia Rise, Falklands, ODP 748B located in the Western part of the Raggart Basin, Kerguelen Plateau and DSDP 277 located in Cathedral Depression on the Southern Campbell Plateau. From this analysis a comprehensive record of the local climatic transitions was ascertained, utilising assemblages of fossil organic-walled dinoflagellate cysts (dinocysts), acritarchs, prasinophyte algae, microforaminiferal linings, scoledonts and terrestrial material. The establishment of a standard nannofossil biostratigraphy provided a temporal framework of the marine palynomorphs in each site. Key dinocyst datums recognised as first or last occurrences that correlated reliably between sites, were compared with the nannofossil zones of each site. The purpose was to provide a Middle Eocene/Early Oligocene dinocyst biostratigraphy that temporally constrains the assemblages. Six primary datums and two secondary datums resulted, which lead to the recognition of four biozones and established a new biozonation in the Southern Ocean. The zones identified various dinocyst events, giving an indication of their probable palaeoenvironments. The Circum-Antarctic distribution pattern of palynomorph assemblages was documented in each site as a total abundance of grains per gram. The ranges and composition of palynomorph assemblages of each site were displayed as a percentage of total abundance. To document any cooling effects the dinocysts were separated into Gonyaulacoid or Peridinioid assemblages to best illustrate their preferred palaeoenvironment. Key findings showed that the pelagic and inner neritic sites differed greatly. Site 696B was the most climatically stable site and dominated by Peridinioid dinocysts which are predominantly heterotrophic. They are most common in an inner neritic palaeoenvironment, but are also present in nutrient upwellings and eutrophic surface waters with lower sea surface temperatures. Terrestrial material dominates all marine palynomorphs in this site which was shallow and warm with few changes up to the E/O boundary ~33.7 Ma, but became more variable in the Early Oligocene. In comparison, the pelagic sites (699, 748B, 277) were unstable, with missing or condensed sediments and no palynomorphs present at differing times. They were mostly dominated by Gonyaulacoid dinocysts, which are autotrophs and generally located in outer neritic to open ocean palaeoenvironments. The non dinocysts of Prasinophyte algae and Leiosphaeridia palynomorphs appeared in higher abundances in the pelagic sites than in the inner neritic sites. Specific dinocyst markers identified temperature changes within the pelagic sites, subsequently highlighting the climatic changes that occurred during the Middle Eocene/Early Oligocene. From ~46 Ma the pelagic sites recorded conditions that were oceanic and cooler. Between ~44 - ~41.5 Ma, a warming in site 748B indicated enhanced stratification and elevated nutrient availability. This was not the case in site 696B and may be due to warm temperatures already present. From ~41.4 Ma the pelagic sites showed that the palaeoenvironment continued to cool, indicated by the presence of Leiosphaeridia and Prasinophyte algae. The palaeoenvironment was oceanic with upwelling and offshore sea surface productivity, illustrated by the Gonyaulacoid and Peridinioid dinocysts present. During the Late Eocene from ~37 Ma a transitional and changeable palaeoenvironment was shown by the high numbers of Operculodinium spp present in sites 696B and 277. From ~33.7 Ma (E/O boundary) in the pelagic sites, most Peridinioid dinocysts had disappeared and very few Gonyaulacoid dinocysts were present. In contrast the inner neritic site (696B) Peridinioid dinocysts were still dominant, and a more gradual disappearance of all the marine palynomorphs was evident.</p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Margaret Ojone Ogundare ◽  
Agneta Fransson ◽  
Melissa Chierici ◽  
Warren R. Joubert ◽  
Alakendra N. Roychoudhury

Sea surface fugacity of carbon dioxide (fCO2ssw) was measured across the Weddell gyre and the eastern sector in the Atlantic Southern Ocean in autumn. During the occupation between February and April 2019, the region of the study transect was a potential ocean CO2 sink. A net CO2 flux (FCO2) of −6.2 (± 8; sink) mmol m–2 d–1 was estimated for the entire study region, with the largest average CO2 sink of −10.0 (± 8) mmol m–2 d–1 in the partly ice-covered Astrid Ridge (AR) region near the coast at 68°S and −6.1 (± 8) mmol m–2d–1 was observed in the Maud Rise (MR) region. A CO2 sink was also observed south of 66°S in the Weddell Sea (WS). To assess the main drivers describing the variability of fCO2ssw, a correlation model using fCO2 and oxygen saturation was considered. Spatial distributions of the fCO2 saturation/O2 saturation correlations, described relative to the surface water properties of the controlling variables (chlorophyll a, apparent oxygen utilization (AOU), sea surface temperature, and sea surface salinity) further constrained the interplay of the processes driving the fCO2ssw distributions. Photosynthetic CO2 drawdown significantly offsets the influence of the upwelling of CO2-rich waters in the central Weddell gyre and enhanced the CO2 sink in the region. FCO2 of −6.9 mmol m–2 d–1 estimated for the Weddell gyre in this study was different from FCO2 of −2.5 mmol m–2 d–1 in autumn estimated in a previous study. Due to low CO2 data coverage during autumn, limited sea-air CO2 flux estimates from direct sea-surface CO2 observations particularly for the Weddell gyre region are available with which to compare the values estimated in this study. This highlights the importance of increasing seasonal CO2 observations especially during autumn/winter to improving the seasonal coverage of flux estimates in the seasonal sea ice-covered regions of the Southern Ocean.


2019 ◽  
Author(s):  
Margot J. Cramwinckel ◽  
Lineke Woelders ◽  
Emiel P. Huurdeman ◽  
Francien Peterse ◽  
Stephen J. Gallagher ◽  
...  

Abstract. Global climate cooled from the early Eocene hothouse (~ 52–50 Ma) to the latest Eocene (~ 34 Ma). At the same time, the tectonic evolution of the Southern Ocean was characterized by the opening and deepening of circum-Antarctic gateways, which affected both surface- and deep-ocean circulation. The Tasman Gateway played a key role in regulating ocean throughflow between Australia and Antarctica. Southern Ocean surface currents through and around the Tasman Gateway have left recognizable tracers in the spatiotemporal distribution of plankton fossils, including organic-walled dinoflagellate cysts. This spatiotemporal distribution depends on physico-chemical properties of the water masses in which these organisms thrived. The degree to which the geographic path of surface currents (primarily controlled by tectonism) or their physico-chemical properties (significantly impacted by climate) have controlled the composition of the fossil assemblages has, however, remained unclear. In fact, it is yet poorly understood to what extent oceanographic response as a whole was dictated by climate change, independent of tectonics-induced oceanographic changes that operate on longer time scales. To disentangle the effects of tectonism and climate in the southwest Pacific Ocean, we target a climatic deviation from the long-term Eocene cooling trend, a 500 thousand year long global warming phase termed the Middle Eocene Climatic Optimum (MECO; ~ 40 Ma). The MECO warming is unrelated to regional tectonism, and thus provides a test case to investigate the oceans physiochemical response to climate change only. We reconstruct changes in surface-water circulation and temperature in and around the Tasman Gateway during the MECO through new palynological and organic geochemical records from the central Tasman Gateway (Ocean Drilling Program Site 1170), the Otway Basin (southeastern Australia) and the Hampden Section (New Zealand). Our results confirm that dinocyst communities track tectonically driven circulation patterns, yet the variability within these communities can be driven by superimposed temperature change. Together with published results from the east of the Tasman Gateway, our results suggest that as surface-ocean temperatures rose, the East Australian Current extended further southward during the peak of MECO warmth. Simultaneous with high sea-surface temperatures in the Tasman Gateway area, pollen assemblages indicate warm temperate rainforests with paratropical elements along the southeastern margin of Australia. Finally, based on new age constraints we suggest that a regional southeast Australian transgression might have been caused by sea-level rise during MECO.


Ocean Science ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 65-79 ◽  
Author(s):  
T. Janjić ◽  
J. Schröter ◽  
R. Savcenko ◽  
W. Bosch ◽  
A. Albertella ◽  
...  

Abstract. With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM) are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT). This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.)


Polar Record ◽  
1991 ◽  
Vol 27 (162) ◽  
pp. 249-253 ◽  
Author(s):  
Gotthilf Hempel

AbstractSeasonal ice of the Southern Ocean, occupying some 15 x 106 km2, supports a distinctive biota based on algae that live on, within and immediately beneath the ice floes. How this annually-forming habitat recruits its biota, and the fate of the biota after the ice thaws in late summer, are little-known. Studies in the Weddell Sea in 1984–88 have shown that the seasonal ice is important as the wintering substrate of krill Euphausia superba which, together with other zooplankton and fish, supports a large breeding population of seals and penguins. Clearly a key habitat in the economy of the Southern Ocean, this seasonal ice is likely to be vulnerable to small climatic changes.


2021 ◽  
pp. 102038
Author(s):  
Alexandre Lourenço de Souza ◽  
Valesca Maria Portilla Eilert ◽  
Thays de Souza Lima Fidalgo ◽  
Isabelle Penha dos Reis ◽  
Claudia Gutterres Vilela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document