scholarly journals Purification, Characterisation and Synthesis of Glycerolipids Extracted from L. plantarum and B. longum subsp. infantis

2021 ◽  
Author(s):  
◽  
Janelle Sauvageau

<p>Glycolipids from the cell wall of Gram-positive bacteria have been the topic of my PhD. It is well known that many bacterial glycolipids (e.g. LPS, TDMs and PIMs) have profound immunological effects, and therefore the characterisation, biological testing and synthesis of gram-positive bacterial glycolipids is of interest. The first part of this thesis includes a description of the extraction and characterisation of glycolipids from gut bacteria including Bifidobacterium and Lactobacillus genus and the second part focussed on the chemical synthesis of Streptococcus sp. DSM 8747 glycolipids and lipoteichoic acid analogues (LTA).  Members of the genus Lactobacillus are common in the gut microbiota and are often used as probiotics. As lactobacilli are known to have benefits to human health, compounds on its surface are of high interest. To date, the structures of the glycolipids from L. plantarum have not been conclusively assigned. Thus, for the first time, the full characterisation of the four principal glycolipids of the L. plantarum cell wall was reported using sugar, linkage and FAME analysis, as well as ESI-MS/MS and 1D- and 2D-NMR spectroscopy. The major glycolipids were identified as: α-D-Glcp-diglyceride, α-D-Galp-(1→2)-α-D-Glcp-diglyceride, β-D-Glcp-(1→6)-α-D-Galp-(1→2)-6-O-acyl-α-D-Glcp-diglyceride and β-D-Glcp-(1→6)-α-D-Galp-(1→2)-α-D-Glcp-diglyceride. These glycolipids showed weak activation of murine bone marrow macrophages in an initial biological screen.  After having identified the structures of the glycolipids from L. plantarum, the glycolipids from Bifidobacterium, a dominant member of the gut microbiota in infants, were extracted. Bifidobacteria are considered to be important in the development of a healthy immune system and they are believed to exhibit anticancerous properties, alleviate the symptoms of irritable bowel syndrome, and are thought to reduce atopic disease. Despite this, the chemical nature of immunomodulatory compounds on the surface of bifidobacteria has not been well documented. Thus, glycolipids were extracted from B. longum subsp. infantis, fractionated chromatographically and analyzed using NMR spectroscopy, constituent sugar and linkage analysis, and fatty acid analysis. These analyzes revealed a novel glycolipid, containing an unprecedented mixed acetal moiety and a galactofuranose moiety as a head group. However, like L. plantarum glycolipids, bifidobacterial glycolipids were shown only to induce little macrophage activity when tested.  Having successfully characterised a novel glycolipid present in bifidobacteria, analogues of this glycolipid as well as poly(glycerophosphate) lipotechoic acids analogues (LTAs) were then synthesised. Much debate still remains about the role of LTAs during Gram-positive bacterial infection. This is partly due to differences in the biological activities of extracted versus synthesised LTAs and highlights the need for structurally defined non-contaminated LTAs when investigating the effect of these glycolipids on the innate immune response. An efficient synthesis of the core lipoteichoic acid (LTA) anchor of the Streptococcus species DSM 8747, and derivatives thereof, was achieved. These Streptococcus glycolipids contain a galactofuranose moiety and thus have similarities to the novel glycolipid that was found in bifidobacteria. The syntheses, which commence with readily available D-galactose, are short (7-9 steps), convergent, and high-yielding (33-37% overall yield). In total 11 different targets were synthesised. The biological activity of these compounds was also investigated, with several analogues (particularly the sn-1,2-di-acylglycerol LTA anchors) found to induce macrophage activation.</p>

2021 ◽  
Author(s):  
◽  
Janelle Sauvageau

<p>Glycolipids from the cell wall of Gram-positive bacteria have been the topic of my PhD. It is well known that many bacterial glycolipids (e.g. LPS, TDMs and PIMs) have profound immunological effects, and therefore the characterisation, biological testing and synthesis of gram-positive bacterial glycolipids is of interest. The first part of this thesis includes a description of the extraction and characterisation of glycolipids from gut bacteria including Bifidobacterium and Lactobacillus genus and the second part focussed on the chemical synthesis of Streptococcus sp. DSM 8747 glycolipids and lipoteichoic acid analogues (LTA).  Members of the genus Lactobacillus are common in the gut microbiota and are often used as probiotics. As lactobacilli are known to have benefits to human health, compounds on its surface are of high interest. To date, the structures of the glycolipids from L. plantarum have not been conclusively assigned. Thus, for the first time, the full characterisation of the four principal glycolipids of the L. plantarum cell wall was reported using sugar, linkage and FAME analysis, as well as ESI-MS/MS and 1D- and 2D-NMR spectroscopy. The major glycolipids were identified as: α-D-Glcp-diglyceride, α-D-Galp-(1→2)-α-D-Glcp-diglyceride, β-D-Glcp-(1→6)-α-D-Galp-(1→2)-6-O-acyl-α-D-Glcp-diglyceride and β-D-Glcp-(1→6)-α-D-Galp-(1→2)-α-D-Glcp-diglyceride. These glycolipids showed weak activation of murine bone marrow macrophages in an initial biological screen.  After having identified the structures of the glycolipids from L. plantarum, the glycolipids from Bifidobacterium, a dominant member of the gut microbiota in infants, were extracted. Bifidobacteria are considered to be important in the development of a healthy immune system and they are believed to exhibit anticancerous properties, alleviate the symptoms of irritable bowel syndrome, and are thought to reduce atopic disease. Despite this, the chemical nature of immunomodulatory compounds on the surface of bifidobacteria has not been well documented. Thus, glycolipids were extracted from B. longum subsp. infantis, fractionated chromatographically and analyzed using NMR spectroscopy, constituent sugar and linkage analysis, and fatty acid analysis. These analyzes revealed a novel glycolipid, containing an unprecedented mixed acetal moiety and a galactofuranose moiety as a head group. However, like L. plantarum glycolipids, bifidobacterial glycolipids were shown only to induce little macrophage activity when tested.  Having successfully characterised a novel glycolipid present in bifidobacteria, analogues of this glycolipid as well as poly(glycerophosphate) lipotechoic acids analogues (LTAs) were then synthesised. Much debate still remains about the role of LTAs during Gram-positive bacterial infection. This is partly due to differences in the biological activities of extracted versus synthesised LTAs and highlights the need for structurally defined non-contaminated LTAs when investigating the effect of these glycolipids on the innate immune response. An efficient synthesis of the core lipoteichoic acid (LTA) anchor of the Streptococcus species DSM 8747, and derivatives thereof, was achieved. These Streptococcus glycolipids contain a galactofuranose moiety and thus have similarities to the novel glycolipid that was found in bifidobacteria. The syntheses, which commence with readily available D-galactose, are short (7-9 steps), convergent, and high-yielding (33-37% overall yield). In total 11 different targets were synthesised. The biological activity of these compounds was also investigated, with several analogues (particularly the sn-1,2-di-acylglycerol LTA anchors) found to induce macrophage activation.</p>


2015 ◽  
Vol 125 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Yang Lin ◽  
Jennifer Y. King ◽  
Steven D. Karlen ◽  
John Ralph

2006 ◽  
Vol 61 (10) ◽  
pp. 1295-1298 ◽  
Author(s):  
Shinsuke Suzuki ◽  
Tetsuya Murayama ◽  
Yoshihito Shiono

Echinolactones C and D, two compounds with an illudalane sesquiterpenoid skeleton, were isolated from the cultured mycelia of the basidiomycetous fungus Echinodontium japonicum (Echinodontiaceae). The structures of echinolactones C and D were determined by 1D and 2D NMR spectroscopy. Their biological activities were determined using antimicrobial activity and lettuce seedling assays.


2017 ◽  
Vol 1 (1) ◽  
pp. 41-45
Author(s):  
Evelina Leont’evna Zdorovenko ◽  
Alexander Stepanovich Shashkov ◽  
Alexandra Alexeevna Kadykova ◽  
Artem Nikolaevich Fakhrutdinov ◽  
Elena Pavlovna Kiseleva ◽  
...  

Abstract Glycopolymers of two types were isolated from the cell wall of Lactococcus lactis BIM B-1024 by stepwise extraction with cold and hot 10% CCl3CO2H and separated by anion-exchange gel chromatography. The following structures of the glycopolymers were established by sugar analysis, dephosphorylation with 48% HF, 1D and 2D NMR spectroscopy, and ESI-MS: β-D-Galp-(1→4)-β-D-Glcp-(1→6)┐ →4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ PSI β-D-Glcp-(1→3)┐ →60-α-D-GalpNAc-(1→3)-β-D-GalpNAc-(1→5)-Rib-ol-1-P-(O→ PSII β-D-Glcp-(1→4)┘ Polysaccharides with the same or similar structures to PSI have been found earlier in various Lactobacillus species, whereas, to our knowledge, the structure of PSII is new.


Author(s):  
Benjamin D. McPheron ◽  
Jeffrey L. Schiano ◽  
Brian F. Thomson ◽  
Kiran K. Shetty ◽  
William W. Brey

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


Molbank ◽  
10.3390/m1250 ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. M1250
Author(s):  
Diana Becerra ◽  
Justo Cobo ◽  
Juan-Carlos Castillo

We report the ambient-temperature synthesis of novel (E)-N-(3-(tert-butyl)-1-methyl-1H-pyrazol-5-yl)-1-(pyridin-2-yl)methanamine 3 in 81% yield by a condensation reaction between 3-(tert-butyl)-1-methyl-1H-pyrazol-5-amine 1 and 2-pyridinecarboxaldehyde 2 in methanol using magnesium sulfate as a drying agent. The N-pyrazolyl imine 3 was full characterized by IR, 1D, and 2D NMR spectroscopy, mass spectrometry, and elemental analysis.


2021 ◽  
Author(s):  
Anton D Kovalenko ◽  
Alexander A. Pavlov ◽  
Ilya D. Ustinovich ◽  
Alena S. Kalyakina ◽  
Alexander S Goloveshkin ◽  
...  

Abstract: Solution behaviour in DMSO using 1D and 2D NMR spectroscopy was performed for lanthanide complexes Ln(L)(HL) and Ln(HL)2Cl, containing non-macrocyclic 2-(tosylamino)-benzylidene-N-benzoylhydrazone (H2L), and the structure of [Yb(L)]+ cation in...


Sign in / Sign up

Export Citation Format

Share Document