scholarly journals Interactions Between Sponges and Macroalgae on Temperate Rocky Reefs

2021 ◽  
Author(s):  
◽  
César A. Cárdenas

<p>Changes in the distributions of organisms not only alter community composition and food web structure, but also can initiate important changes at the ecosystem level. Understanding the interactions between biotic and abiotic factors affecting species’ distribution patterns in temperate habitats is important for predicting responses to future environmental change. Sponges are important members of temperate rocky reefs assemblages that are influenced by a number of abiotic factors including water movement, light regime, inclination and stability of the substratum, as well as complex ecological interactions.  The aim of this thesis was to investigate the interactions between sponges and macroalgae on shallow-water rocky reefs of Wellington, New Zealand, assessing if the distribution patterns of sponges are independent of algal populations. I used a combination of surveys, and manipulative field and laboratory experiments to explore the existence of interactions (positive or negative) between sponges and macroalgae and also to explore the effect of environmental factors on the distribution and abundance of temperate sponges. My first objective was to determine if the spatial distribution patterns of sponges are independent of macroalgae distribution and abundance at different sites on the Wellington south coast (Chapter 2). The results showed that abundance of most sponge species were strongly correlated with inclination, which supports previous studies in the northern hemisphere suggesting that sponge abundance and algal abundance are negatively correlated. In contrast, only a few sponge species were positively correlated with algal abundance. I then explored the positive interactions occurring between some sponges species and the presence of canopy-forming algae (Chapter 3). Results from this chapter suggest the canopy of Ecklonia radiata facilitates the existence of some sponge species such as Crella incrustans on vertical rocky walls. The removal of Ecklonia canopy led to a community dominated by turf algae, which corresponded with a decrease in sponge abundance and richness. My results suggest that the Ecklonia canopy facilitates the presence of some sponge species and allows their coexistence with turf algae underneath the canopy and also by altering immediate physical factors that may be detrimental for some sponge species. To further explore the existence of sponges and understory algae, I used an experimental approach (Chapter 4) to investigate the effect of the brown alga Zonaria turneriana on Leucetta sp. and also mechanisms involved in the interactions. However results from this chapter provided no evidence to support previous hypotheses that understory algae negatively affect sponges. In the last data chapter (Chapter 5), I studied sponges inhabiting different habitats in order to test if environmental variation affects the abundance and diversity of microorganisms, hence having the potential to affect the distribution and abundance of these species The stability observed in bacterial communities among specimens occupying different habitats suggests that environmental variation occurring in those habitats does not affect the stability of the community, and hence most likely does not radically alter the metabolism of these sponges. Although environmental factors such as light and sediment may have an effect on early sponge stages, other environmental (e.g. nutrients, temperature, wave action) and biotic factors, are more likely to influence the growth, survival and distribution of sponges on temperate rocky reefs.  In summary, temperate sponge assemblages are strongly influenced by interactions between a number of abiotic and biotic factors. The outcomes of the ecological interactions are controlled by environment (e.g. influence of inclination on competition between sponges and understory algae) and at the same time, biological interactions (e.g. facilitation) can moderate the influence of abiotic factors such as light, sedimentation and wave action, thus facilitating the coexistence between sponge and macroalgae underneath the Ecklonia canopy. My thesis makes a significant contribution to our knowledge of temperate subtidal ecology, in terms of the effects of biotic and abiotic factors on sponge assemblages and also improves our knowledge of temperate patterns of sponge and macroalgal interactions. Finally, my thesis highlights the importance of small-scale environmental variation in influencing the structure and diversity of sponge assemblages and also increase our understanding of temperate rocky reefs sponges, especially on the less studied sponge assemblages occurring in Ecklonia stands on vertical rocky walls.</p>

2021 ◽  
Author(s):  
◽  
César A. Cárdenas

<p>Changes in the distributions of organisms not only alter community composition and food web structure, but also can initiate important changes at the ecosystem level. Understanding the interactions between biotic and abiotic factors affecting species’ distribution patterns in temperate habitats is important for predicting responses to future environmental change. Sponges are important members of temperate rocky reefs assemblages that are influenced by a number of abiotic factors including water movement, light regime, inclination and stability of the substratum, as well as complex ecological interactions.  The aim of this thesis was to investigate the interactions between sponges and macroalgae on shallow-water rocky reefs of Wellington, New Zealand, assessing if the distribution patterns of sponges are independent of algal populations. I used a combination of surveys, and manipulative field and laboratory experiments to explore the existence of interactions (positive or negative) between sponges and macroalgae and also to explore the effect of environmental factors on the distribution and abundance of temperate sponges. My first objective was to determine if the spatial distribution patterns of sponges are independent of macroalgae distribution and abundance at different sites on the Wellington south coast (Chapter 2). The results showed that abundance of most sponge species were strongly correlated with inclination, which supports previous studies in the northern hemisphere suggesting that sponge abundance and algal abundance are negatively correlated. In contrast, only a few sponge species were positively correlated with algal abundance. I then explored the positive interactions occurring between some sponges species and the presence of canopy-forming algae (Chapter 3). Results from this chapter suggest the canopy of Ecklonia radiata facilitates the existence of some sponge species such as Crella incrustans on vertical rocky walls. The removal of Ecklonia canopy led to a community dominated by turf algae, which corresponded with a decrease in sponge abundance and richness. My results suggest that the Ecklonia canopy facilitates the presence of some sponge species and allows their coexistence with turf algae underneath the canopy and also by altering immediate physical factors that may be detrimental for some sponge species. To further explore the existence of sponges and understory algae, I used an experimental approach (Chapter 4) to investigate the effect of the brown alga Zonaria turneriana on Leucetta sp. and also mechanisms involved in the interactions. However results from this chapter provided no evidence to support previous hypotheses that understory algae negatively affect sponges. In the last data chapter (Chapter 5), I studied sponges inhabiting different habitats in order to test if environmental variation affects the abundance and diversity of microorganisms, hence having the potential to affect the distribution and abundance of these species The stability observed in bacterial communities among specimens occupying different habitats suggests that environmental variation occurring in those habitats does not affect the stability of the community, and hence most likely does not radically alter the metabolism of these sponges. Although environmental factors such as light and sediment may have an effect on early sponge stages, other environmental (e.g. nutrients, temperature, wave action) and biotic factors, are more likely to influence the growth, survival and distribution of sponges on temperate rocky reefs.  In summary, temperate sponge assemblages are strongly influenced by interactions between a number of abiotic and biotic factors. The outcomes of the ecological interactions are controlled by environment (e.g. influence of inclination on competition between sponges and understory algae) and at the same time, biological interactions (e.g. facilitation) can moderate the influence of abiotic factors such as light, sedimentation and wave action, thus facilitating the coexistence between sponge and macroalgae underneath the Ecklonia canopy. My thesis makes a significant contribution to our knowledge of temperate subtidal ecology, in terms of the effects of biotic and abiotic factors on sponge assemblages and also improves our knowledge of temperate patterns of sponge and macroalgal interactions. Finally, my thesis highlights the importance of small-scale environmental variation in influencing the structure and diversity of sponge assemblages and also increase our understanding of temperate rocky reefs sponges, especially on the less studied sponge assemblages occurring in Ecklonia stands on vertical rocky walls.</p>


2020 ◽  

The banana agro-export sector in Ecuador provides millions of dollars in income for this concept, but with this development, a series of quality standards have been established that must be met to enter the export system. This has contributed to establishing good post-harvest production and management practices that guarantee the optimal production of bananas and plantains. The objective of this study was to determine the factors involved in the rejection of bananas (Musa acuminata) destined for international commercialization. The methodology considered the design modality of non-experimental transactional research, with a quantitative approach. The methodological design was developed in three phases at Finca 6 Hermanas located in the Barraganete sector of the San Juan parish in the Puebloviejo canton of the Los Ríos Province, Ecuador. The results highlight that the main causes for which banana rejection is generated are due to abiotic factors (damage, dry latex, scar, insect damage, broken neck, overgrowth) in a higher percentage of 79.55 % and biotic factors ( twins, diseases, short finger) by 20.45 %. The average rejection was 6 361 fingers and1 269 Kilograms (K) over the 6-week study duration. The analysis of variance turned out to be significant for variable 1 (biotic and abiotic). Ho is rejected; with the criterion of p-value < 0.0001 and F (9; 45) = 2.10., F = 13.17> F critic. In the case of variable (2) “work weeks”, Ho is accepted with the criteria obtained of p-value of 0.7694 and F (5; 45) = 2.4., As F = 0.51 < F critic, it is concludes, that with a significance level of 5% the null hypothesis is accepted. It is concluded that these figures lead to the elaboration of strategies that systemically mitigate the damages, by correcting each one of the causes that cause the deterioration of the banana and increasing the economic gains of the commercialization process.


2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


2016 ◽  
Vol 17 (2) ◽  
pp. 76-83 ◽  
Author(s):  
C. J. Harbach ◽  
T. W. Allen ◽  
C. R. Bowen ◽  
J. A. Davis ◽  
C. B. Hill ◽  
...  

The terms used to describe symptoms of delayed senescence in soybean often are used inconsistently or interchangeably and do not adequately distinguish the observed symptoms in the field. Various causes have been proposed to explain the development of delayed senescence symptoms. In this article, we review published reports on delayed senescence symptoms in soybean, summarize current research findings, provide examples of terms related to specific symptoms, and present an overview of the results of a multi-state survey directed to soybean growers to understand their concerns about delayed soybean senescence. Some of these terms, such as green bean syndrome and green stem syndrome, describe symptoms induced by biotic factors, while other terms describe symptoms associated with abiotic factors. Some delayed senescence terms involve the whole plant remaining green while other terms include just the stem and other plant parts such as pods. In the grower survey, 77% reported observing soybean plants or plant parts that remained green after most plants in the field were fully mature with ripe seed. Most respondents attributed these symptoms to changes in breeding and choice of cultivars. At the end of this article, we standardized the terms used to describe delayed senescence in soybean. Accepted for publication 23 March 2016. Published 15 April 2016.


2008 ◽  
Vol 22 (4) ◽  
pp. 970-982 ◽  
Author(s):  
Ênio Wocyli Dantas ◽  
Ariadne do Nascimento Moura ◽  
Maria do Carmo Bittencourt-Oliveira ◽  
João Dias de Toledo Arruda Neto ◽  
Airlton de Deus C. Cavalcanti

The aim of this study was to determine how abiotic factors drive the phytoplankton community in a water supply reservoir within short sampling intervals. Samples were collected at the subsurface (0.1 m) and bottom of limnetic (8 m) and littoral (2 m) zones in both the dry and rainy seasons. The following abiotic variables were analyzed: water temperature, dissolved oxygen, electrical conductivity, total dissolved solids, turbidity, pH, total nitrogen, nitrite, nitrate, total phosphorus, total dissolved phosphorus and orthophosphate. Phytoplankton biomass was determined from biovolume values. The role abiotic variables play in the dynamics of phytoplankton species was determined by means of Canonical Correspondence Analysis. Algae biomass ranged from 1.17×10(4) to 9.21×10(4) µg.L-1; cyanobacteria had biomass values ranging from 1.07×10(4) to 8.21×10(4) µg.L-1. High availability of phosphorous, nitrogen limitation, alkaline pH and thermal stability all favored cyanobacteria blooms, particularly during the dry season. Temperature, pH, total phosphorous and turbidity were key factors in characterizing the phytoplankton community between sampling times and stations. Of the species studied, Cylindrospermopsis raciborskii populations were dominant in the phytoplankton in both the dry and rainy seasons. We conclude that the phytoplankton was strongly influenced by abiotic variables, particularly in relation to seasonal distribution patterns.


2018 ◽  
Vol 43 (1) ◽  
pp. 24-45 ◽  
Author(s):  
Hannah R Miller ◽  
Stuart N Lane

Matthews’ 1992 geoecological model of vegetation succession within glacial forefields describes how following deglaciation the landscape evolves over time as the result of both biotic and abiotic factors, with the importance of each depending on the level of environmental stress within the system. We focus in this paper on how new understandings of abiotic factors and the potential for biogeomorphic feedbacks between abiotic and biotic factors makes further development of this model important. Disturbance and water dynamics are two abiotic factors that have been shown to create stress gradients that can drive early ecosystem succession. The subsequent establishment of microbial communities and vegetation can then result in biogeomorphic feedbacks via ecosystem engineering that influence the role of disturbance and water dynamics within the system. Microbes can act as ecosystem engineers by supplying nutrients (via remineralization of organic matter and nitrogen fixation), enhancing soil development, either decreasing (encouraging weathering) or increasing (binding sediment grains) geomorphic stability, and helping retain soil moisture. Vegetation can act as an ecosystem engineer by fixing nitrogen, enhancing soil development, modifying microbial community structure, creating seed banks, and increasing geomorphic stability. The feedbacks between vegetation and water dynamics in glacial forefields are still poorly studied. We propose a synthesized model of ecosystem succession within glacial forefields that combines Matthews’ initial geoecological model and Corenblit's model to illustrate how gradients in environmental stress combined with successional time drive the balance between abiotic and biotic factors and ultimately determine the successional stage and potential for biogeomorphic feedbacks.


Science ◽  
2019 ◽  
Vol 365 (6457) ◽  
pp. 1045-1049 ◽  
Author(s):  
Michael J. Liao ◽  
M. Omar Din ◽  
Lev Tsimring ◽  
Jeff Hasty

Advances in synthetic biology have led to an arsenal of proof-of-principle bacterial circuits that can be leveraged for applications ranging from therapeutics to bioproduction. A unifying challenge for most applications is the presence of selective pressures that lead to high mutation rates for engineered bacteria. A common strategy is to develop cloning technologies aimed at increasing the fixation time for deleterious mutations in single cells. We adopt a complementary approach that is guided by ecological interactions, whereby cyclical population control is engineered to stabilize the functionality of intracellular gene circuits. Three strains of Escherichia coli were designed such that each strain could kill or be killed by one of the other two strains. The resulting “rock-paper-scissors” dynamic demonstrates rapid cycling of strains in microfluidic devices and leads to an increase in the stability of gene circuit functionality in cell culture.


1999 ◽  
Vol 15 (4) ◽  
pp. 463-479 ◽  
Author(s):  
João A. Madeira ◽  
G. Wilson Fernandes

Reproductive phenology of 13 sympatric taxa of Chamaecrista in three sections was surveyed at Serra do Cipó, south-east Brazil. Mean abundance of flowers and fruits per plant and mean number of aborted, predated, and surviving seeds per fruit were estimated. Monthly average number of developed seeds per fruit multiplied by the monthly mean number of fruits per plant gave the monthly average number of seeds produced by a plant of each taxon. Five types of phenological behaviour were differentiated by cluster analyses according to the season during which each species produced most of its mature seeds. This behaviour was related to the taxonomic section to which the taxa belong, to plant architecture, to geographical range, to seed predation and to local climatic seasonality. Herbs were more affected by variation in rainfall than shrubs and trees. Two species did not show any clear seasonal behaviour. Widespread taxa produced most of their mature seeds in the rainy season or immediately after it, and all but one of the narrowly distributed species produced most of their mature seeds in the dry season or in the transition from dry to rainy season. Seed predation is probably not an important selective force affecting reproductive phenology of larger taxa, while the smaller taxa seemed too constrained by abiotic factors for biotic factors to influence their phenology significantly.


2017 ◽  
Vol 74 (7) ◽  
pp. 1125-1134 ◽  
Author(s):  
Fan Zhang ◽  
Kevin B. Reid ◽  
Thomas D. Nudds

The relative effects of biotic and abiotic factors, and the life-history stages upon which they act to affect fish recruitment, vary among species and ecosystems. We compared the effects of spawning stock biomass, and factors operating at early-term (encompassing the egg, yolk-sac larval, and first few days of swim-up larval stages), middle-term (including the swim-up larval and pelagic juvenile stages), and late-term (over the benthic juvenile stage) on recruitment by yellow perch (Perca flavescens) in the western basin of Lake Erie between 1999 and 2013. Variation of recruitment was mainly driven by middle-term effects. Then, abiotic factors, such as warming rate and wind speed, more strongly affected recruitment than did biotic factors. Among middle-term biotic factors, the top-down effect of yearling walleye (Sander vitreus) abundance was stronger than the bottom-up effect of zooplankton abundance. Similar to marine species, physical processes appear to strongly affect recruitment dynamics of Lake Erie yellow perch over its pelagic larval and juvenile stages, demonstrating the importance of physical and biological processes in understanding fish population dynamics in large lakes.


Sign in / Sign up

Export Citation Format

Share Document