scholarly journals Paleomagnetic Rotation Study of Woodlark-Australia plate motions in the Woodlark Rift, SE Papua New Guinea

2021 ◽  
Author(s):  
◽  
Elizabeth Ann Cairns

<p>The Woodlark Rift in SE Papua New Guinea is a continental rift to the west of active oceanic spreading in the Woodlark Basin, which separates the Australian Plate to the south from the relatively anticlockwise rotating Woodlark Plate to the north. During Pliocene to Recent times the Woodlark Rift has been the setting for rapid exhumation of the world’s youngest UHP rocks (Baldwin et al., 2004, 2008; Gordon et al, 2012; Little et al., 2011), and is currently one of few places on the globe where active continental breakup is occurring ahead of a propagating oceanic spreading centre. While the Woodlark Basin contains a record of oceanic spreading since ˜6 Ma (Taylor et al., 1999), and GPS data describe present-day crustal motions (Wallace et al., manuscript in review), the Neogene temporal and kinematic evolution of continental extension in the Woodlark Rift is less well constrained. We compare Characteristic magnetization directions for six formations, Early Miocene (˜20 Ma) to Late Pliocene (3 ± 0.5), with contemporaneous expected field directions corresponding to Australian Plate paleomagnetic pole locations. We interpret declination anomalies (at 95% confidence) to estimate finite vertical-axis rotations of crustal blocks with respect to a fixed Australian Plate. Temporal and spatial relationships between declination anomalies for six formation mean directions, across four paleomagnetic localities, provide new evidence to constrain aspects of the Miocene to Recent history of the Woodlark Rift.  We obtained 250 oriented core samples from Miocene to Pliocene aged rocks at four localities in the Woodlark Rift. Components of Characteristic Remanent Magnetization (ChRM) have been determined from step-wise thermal and alternating field demagnetization profiles of >300 individual specimens. A total of 157 ChRM components contribute to the calculation of representative paleomagnetic directions for six formations, which have undergone vertical-axis rotations with respect to the Australian Plate associated with development of the Woodlark Rift.  Pliocene volcanic rocks at two key localities near the northern extent of the rift record that: 1) The Amphlett Islands has experienced 10.1 ± 7.6° of anticlockwise rotation since 3 ± 0.5 Ma; 2) NW Normanby Island has undergone a 16.3 ± 9.5° clockwise rotation during the same time interval. Sedimentary rocks at Cape Vogel Peninsula on the northern coast of the mainland Papuan Peninsula, record variable anticlockwise finite rotations of 28.4 ± 10.9° and 12.4 ± 5.5° for Early and Middle Miocene rocks respectively, in contrast to a younger clockwise rotation of 6.5 ± 11.2° for Late Miocene rocks. At the Suau Coast locality, on the south eastern coast of the Papuan Peninsula, Late Miocene dikes record 22.7 ± 13.3° of anticlockwise rotation.  At the Amphlett Islands and NW Normanby localities paleomagnetic data are consistent with current GPS plate motions, suggesting the current kinematics in the rift were established by at least ˜3 Ma. The Amphlett Islands result is consistent with the rate of Pliocene sea floor spreading in the Woodlark Basin, suggesting that locality can be considered as fully on the Woodlark Plate. The clockwise rotation indicated at NW Normanby Island may record development of an incipient dextral transfer fault within an active part of the Woodlark Rift.  Time-varying declination anomalies from the Cape Vogel Peninsula suggest that rifting began there by ˜15 Ma, 7 Ma earlier than previously inferred based on stratigraphic evidence. Furthermore, paleomagnetic data from the south coast of the Papuan Peninsula suggests that early rifting extended further south, and has since contracted to where continental extension is currently accommodated north of the Papuan Peninsula.</p>

2021 ◽  
Author(s):  
◽  
Elizabeth Ann Cairns

<p>The Woodlark Rift in SE Papua New Guinea is a continental rift to the west of active oceanic spreading in the Woodlark Basin, which separates the Australian Plate to the south from the relatively anticlockwise rotating Woodlark Plate to the north. During Pliocene to Recent times the Woodlark Rift has been the setting for rapid exhumation of the world’s youngest UHP rocks (Baldwin et al., 2004, 2008; Gordon et al, 2012; Little et al., 2011), and is currently one of few places on the globe where active continental breakup is occurring ahead of a propagating oceanic spreading centre. While the Woodlark Basin contains a record of oceanic spreading since ˜6 Ma (Taylor et al., 1999), and GPS data describe present-day crustal motions (Wallace et al., manuscript in review), the Neogene temporal and kinematic evolution of continental extension in the Woodlark Rift is less well constrained. We compare Characteristic magnetization directions for six formations, Early Miocene (˜20 Ma) to Late Pliocene (3 ± 0.5), with contemporaneous expected field directions corresponding to Australian Plate paleomagnetic pole locations. We interpret declination anomalies (at 95% confidence) to estimate finite vertical-axis rotations of crustal blocks with respect to a fixed Australian Plate. Temporal and spatial relationships between declination anomalies for six formation mean directions, across four paleomagnetic localities, provide new evidence to constrain aspects of the Miocene to Recent history of the Woodlark Rift.  We obtained 250 oriented core samples from Miocene to Pliocene aged rocks at four localities in the Woodlark Rift. Components of Characteristic Remanent Magnetization (ChRM) have been determined from step-wise thermal and alternating field demagnetization profiles of >300 individual specimens. A total of 157 ChRM components contribute to the calculation of representative paleomagnetic directions for six formations, which have undergone vertical-axis rotations with respect to the Australian Plate associated with development of the Woodlark Rift.  Pliocene volcanic rocks at two key localities near the northern extent of the rift record that: 1) The Amphlett Islands has experienced 10.1 ± 7.6° of anticlockwise rotation since 3 ± 0.5 Ma; 2) NW Normanby Island has undergone a 16.3 ± 9.5° clockwise rotation during the same time interval. Sedimentary rocks at Cape Vogel Peninsula on the northern coast of the mainland Papuan Peninsula, record variable anticlockwise finite rotations of 28.4 ± 10.9° and 12.4 ± 5.5° for Early and Middle Miocene rocks respectively, in contrast to a younger clockwise rotation of 6.5 ± 11.2° for Late Miocene rocks. At the Suau Coast locality, on the south eastern coast of the Papuan Peninsula, Late Miocene dikes record 22.7 ± 13.3° of anticlockwise rotation.  At the Amphlett Islands and NW Normanby localities paleomagnetic data are consistent with current GPS plate motions, suggesting the current kinematics in the rift were established by at least ˜3 Ma. The Amphlett Islands result is consistent with the rate of Pliocene sea floor spreading in the Woodlark Basin, suggesting that locality can be considered as fully on the Woodlark Plate. The clockwise rotation indicated at NW Normanby Island may record development of an incipient dextral transfer fault within an active part of the Woodlark Rift.  Time-varying declination anomalies from the Cape Vogel Peninsula suggest that rifting began there by ˜15 Ma, 7 Ma earlier than previously inferred based on stratigraphic evidence. Furthermore, paleomagnetic data from the south coast of the Papuan Peninsula suggests that early rifting extended further south, and has since contracted to where continental extension is currently accommodated north of the Papuan Peninsula.</p>


Author(s):  
Daniel P. Grondin ◽  
◽  
Michael Petronis ◽  
Jennifer Lindline ◽  
Billy P Romero

Zootaxa ◽  
2021 ◽  
Vol 4991 (1) ◽  
pp. 161-168
Author(s):  
MING KAI TAN ◽  
SIGFRID INGRISCH ◽  
CAHYO RAHMADI ◽  
TONY ROBILLARD

Heminicsara Karny, 1912 is a katydid genus of Agraeciini from the Axylus genus group. It currently comprises 62 species from mainly New Guinea and surrounding archipelagos. Based on recent fieldwork in Lobo in West Papua, Indonesia, a new species of Heminicsara is described here: Heminicsara incrassata sp. nov. It is most readily characterised from congeners and other species of the Axylus genus group by the male tenth abdominal tergite forming a large shield-shaped plate. This represents the first species of Heminicsara described and known from the south-west of New Guinea.  


2019 ◽  
Vol 156 (9) ◽  
pp. 1605-1617 ◽  
Author(s):  
Maria Seton ◽  
Simon Williams ◽  
Nick Mortimer ◽  
Sebastien Meffre ◽  
Steven Micklethwaite ◽  
...  

AbstractOne of the world’s most notable intraplate volcanic regions lies on the eastern Australian plate and includes two age-progressive trails offshore (Tasmantid and Lord Howe seamount chains) and the world’s longest continental hotspot trail (Cosgrove Track). While most studies agree that these chains formed by the rapid northward motion of the Australian plate over a slowly moving mantle source, the volcanic output along these trails, their plate–mantle interactions and the source of the magmatism remain unconstrained. A geophysical mapping and dredging campaign on the RV Southern Surveyor (ss2012_v06) confirmed the prolongation of the Lord Howe Seamount Chain to the South Rennell Trough, ∼200 km further north than previously sampled. Radiometric dating of these new samples at 27–28 Ma, together with previously published results from the southern part of the chain, indicate straightforward northward motion of the Australian plate over a quasi-stationary hotspot as predicted by Indo-Atlantic and Pacific hotspot models. A peak in Lord Howe Seamount Chain magmatism in late Oligocene time, also seen in the Tasmantid and Cosgrove trails, matches a 27–23 Ma slowdown of Australian plate motion. The average magma flux of the Lord Howe hotspot is estimated at 0.4 m3 s−1, similar to rates of crustal production at the South Rennell Trough prior to cessation of spreading in middle Oligocene time, supporting a potential genetic relationship to this spreading system. In addition, plate tectonic modelling suggests that the seamounts and plateaus in the Coral Sea may host the earliest evidence of plume activity in the area.


Radiocarbon ◽  
2009 ◽  
Vol 51 (1) ◽  
pp. 319-335 ◽  
Author(s):  
G S Burr ◽  
J W Beck ◽  
Thierry Corrège ◽  
G Cabioch ◽  
F W Taylor ◽  
...  

This paper presents radiocarbon results from modern South Pacific corals from the Marquesas Islands, Vanuatu, Papua New Guinea (PNG), and Easter Island. All of the measurements are from pre-bomb Porites corals that lived during the 1940s and 1950s. The data reflect subannual to multiannual surface ocean 14C variability and allow for precise, unambiguous reservoir age determinations. The results are compared with published values from other coral records throughout the South Pacific, with striking consistency. By comparisons with other published values, we identify 3 South Pacific regions with uniform pre-bomb reservoir ages (1945 to 1955). These are 1) the Central Equatorial South Pacific (361.6 − 8.2 14C yr, 2 σ); 2) the Western Equatorial South Pacific (322.1 − 8.6 14C yr, 2 σ); and 3) the subtropical Pacific (266.8 − 13.8 14C yr, 2 σ).


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 209-219
Author(s):  
Igor P. Medvedev ◽  
Evgueni A. Kulikov ◽  
Isaac V. Fine

Abstract. The Caspian Sea is the largest enclosed basin on Earth and a unique subject for the analysis of tidal dynamics. Tides in the basin are produced directly by the tide-generating forces. Using the Princeton Ocean Model (POM), we examine details of the spatial and temporal features of the tidal dynamics in the Caspian Sea. We present tidal charts of the amplitudes and phase lags of the major tidal constituents, together with maps of the form factor, tidal range, and tidal current speed. Semi-diurnal tides in the Caspian Sea are determined by a Taylor amphidromic system with anticlockwise rotation. The largest M2 amplitude is 6 cm and is located in Türkmen Aylagy (called Turkmen Bay hereafter). For the diurnal constituents, the Absheron Peninsula separates two individual amphidromes with anticlockwise rotation in the north and in the south. The maximum K1 amplitudes (up to 0.7–0.8 cm) are located in (1) the south-eastern part of the basin, (2) Türkmenbaşy Gulf, (3) Mangyshlak Bay; and (4) Kizlyar Bay. As a result, the semi-diurnal tides prevail over diurnal tides in the Caspian Sea. The maximum tidal range, of up to 21 cm, has been found in Turkmen Bay. The strongest tidal currents have been located in the straits to the north and south of Ogurja Ada, where speeds reach 22 and 19 cm s−1, respectively. Numerical simulations of the tides using different mean sea levels (within a range of 5 m) indicate that spatial features of the Caspian Sea tides are strongly sensitive to changes in mean sea level.


Sign in / Sign up

Export Citation Format

Share Document