scholarly journals Discovery, Characterisation and Engineering of Non-Ribosomal Peptide Synthetases and Phosphopantetheinyl Transferase Enzymes

2021 ◽  
Author(s):  
◽  
Katherine Robins

<p>Non-ribosomal peptide synthetases (NRPSs) are multi-modular biosynthetic enzymes that are responsible for the production of many bioactive secondary metabolites produced by microorganisms. They are activated by phosphopantetheinyl transferase (PPTase) enzymes, which attach an essential prosthetic group to a specific site within a “carrier protein” (CP) domain that is an integral part of each NRPS module. Of particular importance in this work is the NRPS BpsA, which produces a blue pigment called indigoidine; but only when BpsA has first been activated by a PPTase. BpsA can be used as a reporter for PPTase activity, to identify PPTases and/or measure their activity. Several CP-substituted BpsA variants were used, in order to study and identify PPTases which may recognise different CP domains. The first part of the research described in this thesis examined the features of foreign CP interactions within BpsA that made these functional substitutions possible. Two key residues, the +4 and +24 positions relative to an invariant serine, were found to be highly important; with appropriate substitutions at these positions yielding active CP-substituted variants.  Wild type BpsA and the CP-substituted variants were then used as the basis of a screen to discover new PPTase genes, and associated natural product biosynthetic genes, from metagenomic libraries. The vast majority of bacteria that produce bioactive secondary metabolites are unable to be cultured under laboratory conditions; screening metagenomic libraries is a way to access this untapped biodiversity in order to discover new natural products. Two environmental DNA libraries were screened, and PPTase genes were identified via their ability to activate BpsA, giving rise to blue colonies in high throughput agar plate screens. This screen proved to be a powerful enrichment strategy with almost half of the novel 21 PPTase genes recovered also linked to biosynthetic gene clusters. Using the evolved CP-substituted BpsA variants (and thereby altering the PPTase recognition site) enabled a wider variety of hits to be found. This led to the hypothesis that some of the PPTases discovered via this screening method would have non-overlapping substrate specificities, a beneficial property for certain PPTase applications.  The 21 PPTase genes discovered via metagenomic screening were characterised further, using a series of assays involving BpsA to measure their activity. As is common for PPTase enzymes, there were difficulties in obtaining enough soluble protein via purification to perform a detailed analysis of each. Those that were able to be purified had much lower activity than other previously characterised PPTases, and were also not as specific for their CP substrates as they had first appeared to be. Due to these low activity levels, several other previously characterised PPTases were also studied further using the BpsA methods. All PPTases showed a relatively broad activity across a range of CP substrates.  The desire to obtain PPTases with more specific substrate specificities led to the development of a directed evolution screen to alter PPTase CP specificity. In a proof-of-principle study the E. coli PPTase EntD was evolved to lose activity with the BpsA CP while retaining activity with its native CP. This screen, the first of its kind to evolve PPTases for greater CP substrate specificity, was successful in recovering several improved variants. These variants had either completely abolished or vastly decreased activity for the WT BpsA CP while retaining the ability to activate the native (EntF) CP domain. The general strategy developed here can be applied to the evolution of other PPTases and CP substrates.</p>

2021 ◽  
Author(s):  
◽  
Katherine Robins

<p>Non-ribosomal peptide synthetases (NRPSs) are multi-modular biosynthetic enzymes that are responsible for the production of many bioactive secondary metabolites produced by microorganisms. They are activated by phosphopantetheinyl transferase (PPTase) enzymes, which attach an essential prosthetic group to a specific site within a “carrier protein” (CP) domain that is an integral part of each NRPS module. Of particular importance in this work is the NRPS BpsA, which produces a blue pigment called indigoidine; but only when BpsA has first been activated by a PPTase. BpsA can be used as a reporter for PPTase activity, to identify PPTases and/or measure their activity. Several CP-substituted BpsA variants were used, in order to study and identify PPTases which may recognise different CP domains. The first part of the research described in this thesis examined the features of foreign CP interactions within BpsA that made these functional substitutions possible. Two key residues, the +4 and +24 positions relative to an invariant serine, were found to be highly important; with appropriate substitutions at these positions yielding active CP-substituted variants.  Wild type BpsA and the CP-substituted variants were then used as the basis of a screen to discover new PPTase genes, and associated natural product biosynthetic genes, from metagenomic libraries. The vast majority of bacteria that produce bioactive secondary metabolites are unable to be cultured under laboratory conditions; screening metagenomic libraries is a way to access this untapped biodiversity in order to discover new natural products. Two environmental DNA libraries were screened, and PPTase genes were identified via their ability to activate BpsA, giving rise to blue colonies in high throughput agar plate screens. This screen proved to be a powerful enrichment strategy with almost half of the novel 21 PPTase genes recovered also linked to biosynthetic gene clusters. Using the evolved CP-substituted BpsA variants (and thereby altering the PPTase recognition site) enabled a wider variety of hits to be found. This led to the hypothesis that some of the PPTases discovered via this screening method would have non-overlapping substrate specificities, a beneficial property for certain PPTase applications.  The 21 PPTase genes discovered via metagenomic screening were characterised further, using a series of assays involving BpsA to measure their activity. As is common for PPTase enzymes, there were difficulties in obtaining enough soluble protein via purification to perform a detailed analysis of each. Those that were able to be purified had much lower activity than other previously characterised PPTases, and were also not as specific for their CP substrates as they had first appeared to be. Due to these low activity levels, several other previously characterised PPTases were also studied further using the BpsA methods. All PPTases showed a relatively broad activity across a range of CP substrates.  The desire to obtain PPTases with more specific substrate specificities led to the development of a directed evolution screen to alter PPTase CP specificity. In a proof-of-principle study the E. coli PPTase EntD was evolved to lose activity with the BpsA CP while retaining activity with its native CP. This screen, the first of its kind to evolve PPTases for greater CP substrate specificity, was successful in recovering several improved variants. These variants had either completely abolished or vastly decreased activity for the WT BpsA CP while retaining the ability to activate the native (EntF) CP domain. The general strategy developed here can be applied to the evolution of other PPTases and CP substrates.</p>


2007 ◽  
Vol 6 (4) ◽  
pp. 710-720 ◽  
Author(s):  
Olivia Márquez-Fernández ◽  
Ángel Trigos ◽  
Jose Luis Ramos-Balderas ◽  
Gustavo Viniegra-González ◽  
Holger B. Deising ◽  
...  

ABSTRACT Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4′-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (ΔcfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, ΔfluG, and ΔtmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both ΔtmpA and ΔfluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
LG Malak ◽  
DW Bishay ◽  
AM Abdel-baky ◽  
AM Moharram ◽  
SJ Cutler ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
JJ Araya ◽  
M Chavarría ◽  
A Pinto-Tomás ◽  
C Murillo ◽  
L Uribe ◽  
...  

2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


Sign in / Sign up

Export Citation Format

Share Document