scholarly journals A Constraint-Based Approach to Manipulator Kinematics and Singularities

2021 ◽  
Author(s):  
◽  
Seyedvahid Amirinezhad

<p>In this thesis, a differential-geometric approach to the kinematics of multibody mechanisms is introduced that enables analysis of singularities of both serial and parallel manipulators in a flexible and complete way. Existing approaches such as those of Gosselin and Angeles [1], Zlatanov et al. [2] and Park and Kim [3] make use of a combination of joint freedoms and constraints and so build in assumptions. In contrast, this new approach is solely constraint-based, avoiding some of the shortcomings of these earlier theories.  The proposed representation has two core ingredients. First, it avoids direct reference to the choice of inputs and their associated joint freedoms and instead focuses on a kinematic constraint map (KCM), defined by the constraints imposed by all joints and not requiring consideration of closure conditions arising from closed loops in the design. The KCM is expressed in terms of pose (i.e. position and orientation) variables, which are the coordinates of all the manipulator’s links with respect to a reference frame. The kinematics of a given manipulator can be described by means of this representation, locally and globally. Also, for a family of manipulators defined by a specific architecture, the KCM will tell us how the choice of design parameters (e.g. link lengths) affects these kinematic properties within the family.  At a global level, the KCM determines a subset in the space of all pose variables, known as the configuration space (C-space) of the manipulator, whose topology may vary across the set of design parameters. The Jacobian (matrix of first-order partial derivatives) of the KCM may become singular at some specific choices of pose variables. These conditions express a subset called the singular set of the C-space. It is shown that if a family of manipulators, parametrised by a manifold Rd of design parameters, is “well-behaved” then the pose variables can be eliminated from the KCM equations together with the conditions for singularities, to give conditions in terms of design parameters, that define a hypersurface in Rd of manipulators in the class that exhibit C-space singularities. These are referred to as Grashof-type conditions, as they generalise classically known inequalities classifying planar 4-bar mechanisms due to Grashof [4].  Secondly, we develop the theory to incorporate actuator space (A-space) and workspace (W-space), based on a choice of actuated joints or inputs and on the manipulator’s end-effector workspace or outputs. This will facilitate us with a framework for analysing singularities for forward and inverse kinematics via input and output mappings defined on the manipulator’s C-space. This provides new insight into the structure of the forward and inverse kinematics, especially for parallel manipulators.  The theory is illustrated by a number of applications, some of which recapitulate classical or known results and some of which are new.</p>

2021 ◽  
Author(s):  
◽  
Seyedvahid Amirinezhad

<p>In this thesis, a differential-geometric approach to the kinematics of multibody mechanisms is introduced that enables analysis of singularities of both serial and parallel manipulators in a flexible and complete way. Existing approaches such as those of Gosselin and Angeles [1], Zlatanov et al. [2] and Park and Kim [3] make use of a combination of joint freedoms and constraints and so build in assumptions. In contrast, this new approach is solely constraint-based, avoiding some of the shortcomings of these earlier theories.  The proposed representation has two core ingredients. First, it avoids direct reference to the choice of inputs and their associated joint freedoms and instead focuses on a kinematic constraint map (KCM), defined by the constraints imposed by all joints and not requiring consideration of closure conditions arising from closed loops in the design. The KCM is expressed in terms of pose (i.e. position and orientation) variables, which are the coordinates of all the manipulator’s links with respect to a reference frame. The kinematics of a given manipulator can be described by means of this representation, locally and globally. Also, for a family of manipulators defined by a specific architecture, the KCM will tell us how the choice of design parameters (e.g. link lengths) affects these kinematic properties within the family.  At a global level, the KCM determines a subset in the space of all pose variables, known as the configuration space (C-space) of the manipulator, whose topology may vary across the set of design parameters. The Jacobian (matrix of first-order partial derivatives) of the KCM may become singular at some specific choices of pose variables. These conditions express a subset called the singular set of the C-space. It is shown that if a family of manipulators, parametrised by a manifold Rd of design parameters, is “well-behaved” then the pose variables can be eliminated from the KCM equations together with the conditions for singularities, to give conditions in terms of design parameters, that define a hypersurface in Rd of manipulators in the class that exhibit C-space singularities. These are referred to as Grashof-type conditions, as they generalise classically known inequalities classifying planar 4-bar mechanisms due to Grashof [4].  Secondly, we develop the theory to incorporate actuator space (A-space) and workspace (W-space), based on a choice of actuated joints or inputs and on the manipulator’s end-effector workspace or outputs. This will facilitate us with a framework for analysing singularities for forward and inverse kinematics via input and output mappings defined on the manipulator’s C-space. This provides new insight into the structure of the forward and inverse kinematics, especially for parallel manipulators.  The theory is illustrated by a number of applications, some of which recapitulate classical or known results and some of which are new.</p>


Robotica ◽  
1994 ◽  
Vol 12 (1) ◽  
pp. 59-64 ◽  
Author(s):  
I. Uzmay ◽  
S. Yildirim

This paper presents an example of the application of geometric and algebraic approaches to the inverse kinematics problem of four-link robot manipulators. A special arm configuration of the robot manipulator is employed for solving the inverse kinematics problem by using the geometric approach. The obtained joint variables as angular positions are defined in the form of cubic polynomials. The other kinematic parameters of the joints, such as angular velocities and angular accelerations, are the time derivatives of these polynomials. It is evident that there is no definite difference between the results of the two approaches. Consequently, if an appropriate arm configuration for the geometric approach can be established, the inverse kinematics can be solved in a simpler and shorter way.


Author(s):  
J-S Zhao ◽  
W Lu ◽  
F Chu ◽  
Z-J Feng

As the kinematics and statics play a very important role in determining the actuating inputs and the effective loads that the end-effector sustains, this article focuses on this issue and proposes an analytical process to study the forward and inverse kinematics and statics of spatial manipulators. As series manipulators and parallel manipulators show different features in kinematics and statics, this article discusses them separately. First, the forward and inverse velocity problems of the manipulator linkages are investigated with reciprocal screw theory. Then, the static balance conditions together with forward and inverse statics of the manipulator linkages are established through virtual power theory. In the kinematics analysis, the primary conditions for feasible motions of an end-effector are addressed through velocity screws. Illustrative examples indicate that the method proposed in this article can be used to guide the singularity identification, path planning, and feasible motion determination.


Author(s):  
Saeed Behzadipour

A new hybrid cable-driven manipulator is introduced. The manipulator is composed of a Cartesian mechanism to provide three translational degrees of freedom and a cable system to drive the mechanism. The end-effector is driven by three rotational motors through the cables. The cable drive system in this mechanism is self-stressed meaning that the pre-tension of the cables which keep them taut is provided internally. In other words, no redundant actuator or external force is required to maintain the tensile force in the cables. This simplifies the operation of the mechanism by reducing the number of actuators and also avoids their continuous static loading. It also eliminates the redundant work of the actuators which is usually present in cable-driven mechanisms. Forward and inverse kinematics problems are solved and shown to have explicit solutions. Static and stiffness analysis are also performed. The effects of the cable’s compliance on the stiffness of the mechanism is modeled and presented by a characteristic cable length. The characteristic cable length is calculated and analyzed in representative locations of the workspace.


Author(s):  
Sunil Kumar Agrawal ◽  
Siyan Li ◽  
Glen Desmier

Abstract The human spine is a sophisticated mechanism consisting of 24 vertebrae which are arranged in a series-chain between the pelvis and the skull. By careful articulation of these vertebrae, a human being achieves fine motion of the skull. The spine can be modeled as a series-chain with 24 rigid links, the vertebrae, where each vertebra has three degrees-of-freedom relative to an adjacent vertebra. From the studies in the literature, the vertebral geometry and the range of motion between adjacent vertebrae are well-known. The objectives of this paper are to present a kinematic model of the spine using the available data in the literature and an algorithm to compute the inter vertebral joint angles given the position and orientation of the skull. This algorithm is based on the observation that the backbone can be described analytically by a space curve which is used to find the joint solutions..


Author(s):  
Paul Bosscher ◽  
Robert L. Williams ◽  
Melissa Tummino

This paper introduces a new concept for robotic search and rescue systems. This system uses a rapidly deployable cable robot to augment existing search and rescue mobile robots. This system can greatly increase the range of mobile robots as well as provide overhead views of the disaster site, allowing rescue workers to reach survivors as quickly as possible while minimizing the danger posed to rescue workers. In addition to the system concept, this paper presents a novel kinematic structure for the cable robot, allowing simple translation-only motion (with moment-resisting capability) and easy forward and inverse kinematics for a 3-DOF spatial manipulator. Also, a deployment sequence is described, a rapid calibration algorithm is presented and the workspace of the manipulator is investigated.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Ruiqin Li ◽  
Hongwei Meng ◽  
Shaoping Bai ◽  
Yinyin Yao ◽  
Jianwei Zhang

The paper presents an innovative hexapod walking robot built with 3-UPU parallel mechanism. In the robot, the parallel mechanism is used as both an actuator to generate walking and also a connecting body to connect two groups of three legs, thus enabling the robot to walk with simple gait by very few motors. In this paper, forward and inverse kinematics solutions are obtained. The workspace of the parallel mechanism is analyzed using limit boundary search method. The walking stability of the robot is analyzed, which yields the robot’s maximum step length. The gait planning of the hexapod walking robot is studied for walking on both flat and uneven terrains. The new robot, combining the advantages of parallel robot and walking robot, has a large carrying capacity, strong passing ability, flexible turning ability, and simple gait control for its deployment for uneven terrains.


Sign in / Sign up

Export Citation Format

Share Document