scholarly journals Stability and Gait Planning of 3-UPU Hexapod Walking Robot

Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Ruiqin Li ◽  
Hongwei Meng ◽  
Shaoping Bai ◽  
Yinyin Yao ◽  
Jianwei Zhang

The paper presents an innovative hexapod walking robot built with 3-UPU parallel mechanism. In the robot, the parallel mechanism is used as both an actuator to generate walking and also a connecting body to connect two groups of three legs, thus enabling the robot to walk with simple gait by very few motors. In this paper, forward and inverse kinematics solutions are obtained. The workspace of the parallel mechanism is analyzed using limit boundary search method. The walking stability of the robot is analyzed, which yields the robot’s maximum step length. The gait planning of the hexapod walking robot is studied for walking on both flat and uneven terrains. The new robot, combining the advantages of parallel robot and walking robot, has a large carrying capacity, strong passing ability, flexible turning ability, and simple gait control for its deployment for uneven terrains.

Author(s):  
Ruiqin Li ◽  
Hongwei Meng ◽  
Shaoping Bai ◽  
Yinyin Yao ◽  
Jianwei Zhang

The paper presents an innovative hexapod walking robot built with 3-UPU parallel mechanism. In the robot, the parallel mechanism is used as both an actuator to generate walking and also a connecting body to connect two groups of three legs, thus enables the robot to walk with simple gait by very few motors. In the paper, the forward and inverse kinematics solutions are obtained. The workspace of the parallel mechanism is analyzed using limit boundary search method. The walking stability of the robot is analyzed, which yields the robot’s maximum step length. The gait planning of the hexapod walking robot is studied for walking on both flat and uneven terrains. The new robot, combining the advantages of parallel robot and walking robot, has a large carrying capacity, strong passing ability, flexible turning ability, and simple gait control for its deployment for uneven terrain.


2015 ◽  
Vol 9 (1) ◽  
pp. 214-218 ◽  
Author(s):  
Yongchao Hou ◽  
Yang Zhao

A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


Author(s):  
Xin Li ◽  
Xilun Ding ◽  
Gregory S Chirikjian

Orientation accuracy is a key factor in the design of mechanisms for antenna pointing. Our design uses a redundantly actuated parallel mechanism which may provide an effective way to solve this problem, and even can increase its payload capability and reliability. The presented mechanism can be driven by rotary motors fixed on the base to reduce the inertia of the moving parts and to lower the power consumption. The mechanism is redundantly actuated by three arms, and is used as a two-dimensional antenna tracking and pointing device. Both the forward and inverse kinematics are investigated to find all the possible solutions. Detailed characters of the platform are analyzed to demonstrate the advantages in eliminating singularities and improving pointing accuracy. A method of calculating the overconstrained orientational error is also proposed based on the differential kinematics. All the methods are verified by numerical examples.


2020 ◽  
Author(s):  
Ru-Gui Wang ◽  
Hai-Bo Huang ◽  
Yi Li ◽  
Ji-Wei Yuan

Abstract In this paper, a novel tree climbing robot mechanism was designed, based on the tree climbing movement and posture of the primates. The overall design and tree climbing gait of the tree climbing robot were analyzed in detail. According to the screw theory, the DOF of the leg of the tree climbing robot is calculated. The forward and inverse kinematics equations of the tree climbing robot were established and solved. The kinematics of the leg parallel mechanism was established, furthermore, the singularity of the leg mechanism was analyzed and three types of singularity were derived. The simplified diagrams and the corresponding model diagrams, at the singular points, were drawn. Finally, the movement is simulated and analyzed. And the changes of the leg joint angular and the foot-end displacement and the relationship between the driving displacement and angles of the tree climbing robot by numerical simulation is obtained at the same time. Prototype physical model of the tree climbing robot was made, which further verified the rationality and feasibility of the tree climbing robot mechanism studied in this paper.


Author(s):  
Qiong Jin ◽  
Ting-Li Yang

Abstract A class of new 3-DOF parallel robot mechanisms is investigated. Closed-formed solutions are developed for both the forward and inverse kinematics. Compared with known 3-DOF parallel robot mechanisms, these mechanisms are not only simple in structure with fewer solutions for position analyses but also decoupled. The mechanism decouplity, which is related to the topological characteristics, dimensional parameters, kinematic joint types and the choice of input-joints, is very useful for real control and path planning of parallel robots.


Author(s):  
Jing-Shan Zhao ◽  
Songtao Wei ◽  
Junjie Ji

This paper investigates the forward and inverse kinematics in screw coordinates for a planar slider-crank linkage. According to the definition of a screw, both the angular velocity of a rigid body and the linear velocity of a point on it are expressed in screw components. Through numerical integration on the velocity solution, we get the displacement. Through numerical differential interpolation of velocity, we gain the acceleration of any joint. Traditionally, position and angular parameters are usually the only variables for establishing the displacement equations of a mechanism. For a series mechanism, the forward kinematics can be expressed explicitly in the variable of position parameters while the inverse kinematics will have to resort to numerical algorithms because of the multiplicity of solution. For a parallel mechanism, the inverse kinematics can be expressed explicitly in the variable of position parameters of the end effector while the forward kinematics will have to resort to numerical algorithms because of the nonlinearity of system. Therefore this will surely lead to second order numerical differential interpolation for the calculation of accelerations. The most prominent merit of this kinematic algorithm is that we only need the first order numerical differential interpolation for computing the acceleration. To calculate the displacement, we also only need the first order numerical integral of the velocity. This benefit stems from the screw the coordinates of which are velocity components. The example of planar four-bar and five-bar slider-crank linkages validate this algorithm. It is especially suited to developing numerical algorithms for forward and inverse velocity, displacement and acceleration of a linkage.


Robotica ◽  
2021 ◽  
pp. 1-8
Author(s):  
Huanhuan Ren ◽  
Lizhong Zhang ◽  
Chengzhi Su

SUMMARY In this paper, a new type of biped mobile robot is designed. Each leg of the robot is a 6 degree-of-freedom (DOF) parallel mechanism, and each leg has three relatively fixed landing points. The leg’s structure gives the robot better performance on large carrying capacity, strong environmental adaptability and fast moving speed simultaneously. At the same time, it helps the robot move more steadily and change direction more simply. Based on the structural features of the leg, the inverse kinematics model of the biped robot is established and a unified formula is obtained. According to an analysis of robot’s workspace, gait planning is completed and simulated. Finally, the special case that the robot can keep the upper body horizontal while walking on a slopy surface is validated.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771659 ◽  
Author(s):  
Lingfeng Sang ◽  
Hongbo Wang ◽  
Hongnian Yu ◽  
Luige Vladareanu

This article adopts a 2-UPS+UP (U, P, and S are universal joint, the prismatic joint, and sphere joint, respectively) parallel mechanism as the leg mechanism of the quadruped walking robot based on the bionic concept and the motion capacity of the leg mechanism. The article investigates the kinematics (including the leg mechanism and the whole mechanism), gait planning, control, and experiment in detail. The following tasks are conducted: (1) designing the whole mechanism and developing the kinematics equations for both the leg mechanism and the whole mechanism; (2) planning the trotting gait and designing the foot trajectory based on the robot characteristics and conducting the kinematics analysis; (3) building the control system of the robot using self-developed controllers and drivers and studying the compound position control strategy; and (4) conducting the experiments for validating the controller, the compound position control strategy, the trotting pace, carrying capacity, and human-carrying walking. The results confirm that the proposed human-carrying walking robot has good performance and it is also verified that the controller and the compound position control strategy are suitable.


Sign in / Sign up

Export Citation Format

Share Document