scholarly journals Towards Synthesis of Simplified Analogues of Pateamine A

2021 ◽  
Author(s):  
◽  
Tao Xu

<p>Pateamine A (22) is a natural product that was isolated from a marine sponge inhabiting the coast of New Zealand. It exhibits potent inhibition of protein synthesis and nonsense-mediated mRNA decay through binding with eIF4A isoforms. Due to the scarcity of pateamine A (22) in the natural source and the low yield of total synthesis of pateamine A, it is necessary to prepare structurally simplified analogues which would allow further research on structure-activity relationships (SAR) of pateamine A (22). Based on the structure-activity relationship studies reported by Romo and co-workers, a simplified triazole analogue 182 lacking methyl groups was synthesized by Hemi Cumming, a previous Ph.D. student who studied at Victoria University of Wellington. The antiproliferative activity of this analogue was found to be significantly lower than that of pateamine A, suggesting that the thiazole embedded within the molecule or the excised methyl groups are crucial for its potency.   Therefore, to further explore the necessary features for its selective activity for eIF4A isoforms, new thiazole analogues 183 – 186 and triazole analogues (10S)-and (10R)-analogue 187 were targeted in this project.    The preparation of the thiazole-containing macrocyclic core of analogues 183 and 184 was achieved. It features: (1) gold-catalysed thiazole formation through coupling between an alkyne fragment and a thioamide fragment; (2) preparation of the Z,E-dienoate moiety by base-induced ring-opening of a δ-substituted-α, β-unsaturated lactone; and (3) a modified Mukaiyama macrolactonisation. The synthesis of the triazole-containing macrocyclic core of (10S)-analogue 187 was completed. It features: (1) a copper-catalysed triazole formation through 1,3-dipolar cycloaddition between an alkyne fragment and an azide fragment; (2) preparation of the Z,E-dienoate moiety by base-induced ring-opening of δ-substituted-α, β-unsaturated lactone; and (3) a modified Mukaiyama macrolactonisation. Studies on the preparation of a side-chain fragment with suitable functionalities to allow coupling with the various macrocycles through olefination reactions were also conducted.  The attachment of the side-chain fragment onto the macrocyclic cores for the synthesis of the targeted analogues 183 and 184 and (10S)-analogue 187 will be investigated in future work. These experimental results will inform the synthesis of new generation analogues to further study the key structures required for effective binding to the protein target eIF4A and selectivity between isoforms.</p>

2021 ◽  
Author(s):  
◽  
Tao Xu

<p>Pateamine A (22) is a natural product that was isolated from a marine sponge inhabiting the coast of New Zealand. It exhibits potent inhibition of protein synthesis and nonsense-mediated mRNA decay through binding with eIF4A isoforms. Due to the scarcity of pateamine A (22) in the natural source and the low yield of total synthesis of pateamine A, it is necessary to prepare structurally simplified analogues which would allow further research on structure-activity relationships (SAR) of pateamine A (22). Based on the structure-activity relationship studies reported by Romo and co-workers, a simplified triazole analogue 182 lacking methyl groups was synthesized by Hemi Cumming, a previous Ph.D. student who studied at Victoria University of Wellington. The antiproliferative activity of this analogue was found to be significantly lower than that of pateamine A, suggesting that the thiazole embedded within the molecule or the excised methyl groups are crucial for its potency.   Therefore, to further explore the necessary features for its selective activity for eIF4A isoforms, new thiazole analogues 183 – 186 and triazole analogues (10S)-and (10R)-analogue 187 were targeted in this project.    The preparation of the thiazole-containing macrocyclic core of analogues 183 and 184 was achieved. It features: (1) gold-catalysed thiazole formation through coupling between an alkyne fragment and a thioamide fragment; (2) preparation of the Z,E-dienoate moiety by base-induced ring-opening of a δ-substituted-α, β-unsaturated lactone; and (3) a modified Mukaiyama macrolactonisation. The synthesis of the triazole-containing macrocyclic core of (10S)-analogue 187 was completed. It features: (1) a copper-catalysed triazole formation through 1,3-dipolar cycloaddition between an alkyne fragment and an azide fragment; (2) preparation of the Z,E-dienoate moiety by base-induced ring-opening of δ-substituted-α, β-unsaturated lactone; and (3) a modified Mukaiyama macrolactonisation. Studies on the preparation of a side-chain fragment with suitable functionalities to allow coupling with the various macrocycles through olefination reactions were also conducted.  The attachment of the side-chain fragment onto the macrocyclic cores for the synthesis of the targeted analogues 183 and 184 and (10S)-analogue 187 will be investigated in future work. These experimental results will inform the synthesis of new generation analogues to further study the key structures required for effective binding to the protein target eIF4A and selectivity between isoforms.</p>


2010 ◽  
Vol 5 (9) ◽  
pp. 1934578X1000500
Author(s):  
Iris Stappen ◽  
Joris Höfinghoff ◽  
Gerhard Buchbauer ◽  
Peter Wolschann

Structural modifications of natural (-)-( Z)-β-santalol have shown that the sandalwood odor impression is highly sensitive, even to small structural changes. Particularly, the substitution of the quaternary carbon is of great influence on the scent. Epi-compounds with side chains in the endo-position possess sandalwood odor in only a few derivatives, whereas modifications at this side chain, as well as modification at the bicyclic ring systems mostly lead to a complete loss of sandalwood fragrance.


2017 ◽  
Vol 134 ◽  
pp. 86-96 ◽  
Author(s):  
Anna Y. Belorusova ◽  
Andrea Martínez ◽  
Zoila Gándara ◽  
Generosa Gómez ◽  
Yagamare Fall ◽  
...  

1980 ◽  
Vol 1 (7) ◽  
pp. 197-201
Author(s):  
Michael J. Kraemer ◽  
Arnold L. Smith

Ampicillin, first introduced in 1961, has probably become the most widely used penicillin in clinical pediatrics. STRUCTURE ACTIVITY RELATIONSHIPS All penicillins contain the 6-amino penicillanic acid moiety (Fig 1). Its structure includes a thiazolidine ring (A), a β-lactam ring (B), the source of antibacterial activity, and an acyl side chain (R), containing a variety of substitutions creating the family of semisynthetic penicillins. The only difference between ampicillin and penicillin G is the presence of an amino group in the acyl side chain (Fig 1). PHARMACOLOGY AND BACTERIOLOGY Ampicillin is a semisynthetic penicillin, active against Streptococus pneumoniae and certain Gram-negative bacteria, including most Haemophilus influenzae, Escherichia coli, and certain Proteus species. Compared to penicillin G, it has increased stability in acid solutions: a property facilitating oral administration and absorption. It penetrates into most body tissues; effective entry into CSF, however, occurs only with inflamed meninges. The serum half-life with normal renal function varies from four hours in newborns1 to 1.3 hours in adults.2 Ampicillin can cause an allergic, or nonallergic skin rash (Fig 2). ALLERGY Allergy (for the purposes of this discussion) is defined as a specific immunologic interaction, between either antigen and antibody, or antigen with a sensitized lymphocyte, resulting in a clinically deleterious effect. Implicit is a prior contact with the antigen.


1989 ◽  
Vol 44 (7-8) ◽  
pp. 609-616 ◽  
Author(s):  
Kun Hoe Chung ◽  
Kwang Yun Cho ◽  
Yasuko Asami ◽  
Nobutaka Takahashi ◽  
Shigeo Yoshida

Many derivatives of 2,3-dim ethoxy-4-hydroxypyridine, which were designed from examination of the structure-activity relationship of piericidins, were tested for inhibition of NADH-UQ reductase. The lipophilic side chain of those compounds was indicated to be a key part for activity and its optimal length was conjectured. By the use of two different phases of assay material, intact mitochondria and submitochondria, the size of a membrane effect was shown to depend on the structure of the side chain. 4-Hydroxyquinoline derivatives were also tested for an analogous role in relation to the electron transport function of menaquinone, and they were proven to be inhibitors of NADH-UQ reductase as good as the pyridine derivatives.


Polymer ◽  
2000 ◽  
Vol 41 (2) ◽  
pp. 415-421 ◽  
Author(s):  
N Tirelli ◽  
A Altomare ◽  
R Solaro ◽  
F Ciardelli ◽  
S Follonier ◽  
...  

1991 ◽  
Vol 34 (9) ◽  
pp. 2864-2870 ◽  
Author(s):  
Gordon W. Rewcastle ◽  
Graham J. Atwell ◽  
Bruce C. Baguley ◽  
Maruta Boyd ◽  
Lindy L. Thomsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document