scholarly journals The Synthesis and Evaluation of Heterocycles as Anti-Tuberculosis Agents

2021 ◽  
Author(s):  
◽  
Kristiana Tika Santoso

<p>Tuberculosis (TB) is the leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb), worldwide. Currently, the efficacy of TB treatment regimens has declined due to the rise in antibacterial resistance and the shortage of new TB drugs. Thus, much effort has been spent in anti-tuberculosis drug development and in identifying new therapeutic targets against Mtb. One such target is NADH dehydrogenase-II (NDH-II), an essential enzyme in the mycobacterial electron transport chain that is not present in mammalian cells. In this thesis, four classes of heterocyclic compounds that have the potential to target NDH-II and their evaluation as anti-tubercular agents, are described. An overview of TB drug development and NDH-II as a promising target for TB drugs are described in Chapter 1.  In Chapters 2 and 3, the potential of anti-tubercular drugs based on the quinolinequinone (QQ) scaffold is described. QQs have previously shown promise as TB drugs by activating NDH-II to overproduce harmful reactive oxygen species leading to bacterial cell death. Chapter 2 describes the total synthesis of the QQ natural products ascidiathiazone A and ascidiathiazone B, and derivatives thereof, using a synthetic route that allows for high divergency and the efficient synthesis of the natural products and their intermediates. To this end, the first total synthesis of ascidiathiazone B is reported, as is the identification of ascidiathiazone A as a promising anti-tuberculosis drug with an MIC of 1.6 μM against Mtb. Insight into the ability of a representative quinone, 7-chloro-6-chloroethylamino-2-methyl-QQ, to increase NDH-II activity is also described. In Chapter 3, the syntheses of thirty-two simplified QQs with different functional groups at the 6- and 7-positions of the QQ scaffold are described. These compounds were screened against Mtb, with the lead compound from this library, 7-chloro-6-propargylamino-QQ, exhibiting an MIC of 8 μM against Mtb. Structure-activity data revealed diminished biological activity for QQs bearing tertiary amines, as compared to those with secondary amines, suggesting that the presence of a hydrogen bond donor at the 6- and 7-positions of QQs may play a critical role in antimycobacterial activity.  In Chapter 4, the synthesis and anti-mycobacterial activity of chromonyl-pyrimidines is presented. Chromonyl-pyrimidines have a structural resemblance to quinolinyl pyrimidines, a class of known NDH-II inhibitors and anti-TB agents. Chromones have shown promise as TB drugs, though they have not yet been reported to bind NDH-II. Despite this, chromonyl-pyrimidines contain a ketone functionality that may be able to bind the quinone binding site. For the first eleven-member library of chromonyl pyrimidines synthesised, all but two of the compounds exhibited inhibitory activity against Mtb, however, the growth inhibition was modest (MIC = 36-684 M). Accordingly, a second generation of chromonyl pyrimidines was synthesised, which included six compounds with improved potency against Mtb – all with an MIC value of 12.5 μM. The activity of these chromonyl pyrimidines was attributed to the presence of aromatic rings both on the pyrimidine and the chromone scaffolds, though changes to the electronic properties of the aryl groups, i.e. the incorporations of electron-withdrawing and electron-donating groups, did not affect inhibitory activity.  Finally, in Chapter 5, a library of phthalazinones and pyrimidinyl-phthalazinones with anti-tubercular activity is described. While phthalazinones have not yet been extensively explored as anti-mycobacterial agents, the phthalazinone scaffold has the potential to act as an uncoupler. Uncouplers are typically weak acids or bases that act on the electron transport chain by dissipating the proton motive force and ultimately preventing the generation of ATP. In Mtb, this uncoupling process is detrimental and leads to cell death. Phthalazinones are weakly basic and, due to their bicyclic ketone-bearing motif, has the potential to bind NDH-II at the proposed Q-site. Accordingly, a series of phthalazinones was synthesised to investigate their anti-tubercular activity and uncoupling activity. From the library of phthalazinones, N-tert-butyl- and nitro-substituted phthalazinones elicited high inhibitory activity, both with an MIC value of 3 μM. Of particular note among the pyrimidinyl-phthalazinones was the 4-fluorophenyl-pyrimidinyl-N-heptyl phthalazinone, which showed high potency against Mtb with an MIC of 1.6 μM. Further biological studies showed that some phthalazinones increased the rate of NADH oxidation in mycobacteria, which could be a result of uncoupling activity, while a number of pyrimidinyl-phthalazinones decreased NADH oxidation rates. These mechanistic results indicated that the two classes of compounds may have different modes of inhibition.</p>

2021 ◽  
Author(s):  
◽  
Kristiana Tika Santoso

<p>Tuberculosis (TB) is the leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb), worldwide. Currently, the efficacy of TB treatment regimens has declined due to the rise in antibacterial resistance and the shortage of new TB drugs. Thus, much effort has been spent in anti-tuberculosis drug development and in identifying new therapeutic targets against Mtb. One such target is NADH dehydrogenase-II (NDH-II), an essential enzyme in the mycobacterial electron transport chain that is not present in mammalian cells. In this thesis, four classes of heterocyclic compounds that have the potential to target NDH-II and their evaluation as anti-tubercular agents, are described. An overview of TB drug development and NDH-II as a promising target for TB drugs are described in Chapter 1.  In Chapters 2 and 3, the potential of anti-tubercular drugs based on the quinolinequinone (QQ) scaffold is described. QQs have previously shown promise as TB drugs by activating NDH-II to overproduce harmful reactive oxygen species leading to bacterial cell death. Chapter 2 describes the total synthesis of the QQ natural products ascidiathiazone A and ascidiathiazone B, and derivatives thereof, using a synthetic route that allows for high divergency and the efficient synthesis of the natural products and their intermediates. To this end, the first total synthesis of ascidiathiazone B is reported, as is the identification of ascidiathiazone A as a promising anti-tuberculosis drug with an MIC of 1.6 μM against Mtb. Insight into the ability of a representative quinone, 7-chloro-6-chloroethylamino-2-methyl-QQ, to increase NDH-II activity is also described. In Chapter 3, the syntheses of thirty-two simplified QQs with different functional groups at the 6- and 7-positions of the QQ scaffold are described. These compounds were screened against Mtb, with the lead compound from this library, 7-chloro-6-propargylamino-QQ, exhibiting an MIC of 8 μM against Mtb. Structure-activity data revealed diminished biological activity for QQs bearing tertiary amines, as compared to those with secondary amines, suggesting that the presence of a hydrogen bond donor at the 6- and 7-positions of QQs may play a critical role in antimycobacterial activity.  In Chapter 4, the synthesis and anti-mycobacterial activity of chromonyl-pyrimidines is presented. Chromonyl-pyrimidines have a structural resemblance to quinolinyl pyrimidines, a class of known NDH-II inhibitors and anti-TB agents. Chromones have shown promise as TB drugs, though they have not yet been reported to bind NDH-II. Despite this, chromonyl-pyrimidines contain a ketone functionality that may be able to bind the quinone binding site. For the first eleven-member library of chromonyl pyrimidines synthesised, all but two of the compounds exhibited inhibitory activity against Mtb, however, the growth inhibition was modest (MIC = 36-684 M). Accordingly, a second generation of chromonyl pyrimidines was synthesised, which included six compounds with improved potency against Mtb – all with an MIC value of 12.5 μM. The activity of these chromonyl pyrimidines was attributed to the presence of aromatic rings both on the pyrimidine and the chromone scaffolds, though changes to the electronic properties of the aryl groups, i.e. the incorporations of electron-withdrawing and electron-donating groups, did not affect inhibitory activity.  Finally, in Chapter 5, a library of phthalazinones and pyrimidinyl-phthalazinones with anti-tubercular activity is described. While phthalazinones have not yet been extensively explored as anti-mycobacterial agents, the phthalazinone scaffold has the potential to act as an uncoupler. Uncouplers are typically weak acids or bases that act on the electron transport chain by dissipating the proton motive force and ultimately preventing the generation of ATP. In Mtb, this uncoupling process is detrimental and leads to cell death. Phthalazinones are weakly basic and, due to their bicyclic ketone-bearing motif, has the potential to bind NDH-II at the proposed Q-site. Accordingly, a series of phthalazinones was synthesised to investigate their anti-tubercular activity and uncoupling activity. From the library of phthalazinones, N-tert-butyl- and nitro-substituted phthalazinones elicited high inhibitory activity, both with an MIC value of 3 μM. Of particular note among the pyrimidinyl-phthalazinones was the 4-fluorophenyl-pyrimidinyl-N-heptyl phthalazinone, which showed high potency against Mtb with an MIC of 1.6 μM. Further biological studies showed that some phthalazinones increased the rate of NADH oxidation in mycobacteria, which could be a result of uncoupling activity, while a number of pyrimidinyl-phthalazinones decreased NADH oxidation rates. These mechanistic results indicated that the two classes of compounds may have different modes of inhibition.</p>


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Akihisa Okamoto ◽  
Chisato Sumi ◽  
Hiromasa Tanaka ◽  
Munenori Kusunoki ◽  
Teppei Iwai ◽  
...  

FEBS Letters ◽  
2007 ◽  
Vol 581 (24) ◽  
pp. 4627-4632 ◽  
Author(s):  
Reiko Oshima ◽  
Keiko Yoshinaga ◽  
Yuri Ihara-Ohori ◽  
Ryouichi Fukuda ◽  
Akinori Ohta ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4868-4874 ◽  
Author(s):  
Gregory D. Fairn ◽  
Kendra MacDonald ◽  
Christopher R. McMaster

The isoprenoid farnesol has been shown to preferentially induce apoptosis in cancerous cells; however, the mode of action of farnesol-induced death is not established. We used chemogenomic profiling using Saccharomyces cerevisiae to probe the core cellular processes targeted by farnesol. This screen revealed 48 genes whose inactivation increased sensitivity to farnesol. The gene set indicated a role for the generation of oxygen radicals by the Rieske iron-sulfur component of complex III of the electron transport chain as a major mediator of farnesol-induced cell death. Consistent with this, loss of mitochondrial DNA, which abolishes electron transport, resulted in robust resistance to farnesol. A genomic interaction map predicted interconnectedness between the Pkc1 signaling pathway and farnesol sensitivity via regulation of the generation of reactive oxygen species. Consistent with this prediction (i) Pkc1, Bck1, and Mkk1 relocalized to the mitochondria upon farnesol addition, (ii) inactivation of the only non-essential and non-redundant member of the Pkc1 signaling pathway, BCK1, resulted in farnesol sensitivity, and (iii) expression of activated alleles of PKC1, BCK1, and MKK1 increased resistance to farnesol and hydrogen peroxide. Sensitivity to farnesol was not affected by the presence of the osmostabilizer sorbitol nor did farnesol affect phosphorylation of the ultimate Pkc1-responsive kinase responsible for controlling the cell wall integrity pathway, Slt2. The data indicate that the generation of reactive oxygen species by the electron transport chain is a primary mechanism by which farnesol kills cells. The Pkc1 signaling pathway regulates farnesol-mediated cell death through management of the generation of reactive oxygen species.


2018 ◽  
Vol 3 (3) ◽  
pp. 1800058 ◽  
Author(s):  
Jinhua Li ◽  
Meng Jiang ◽  
Huaijuan Zhou ◽  
Ping Jin ◽  
Kenneth M. C. Cheung ◽  
...  

2013 ◽  
Vol 437 (4) ◽  
pp. 632-636 ◽  
Author(s):  
Seokheon Hong ◽  
Joo Yeon Kim ◽  
Joohyun Hwang ◽  
Ki Soon Shin ◽  
Shin Jung Kang

2002 ◽  
Vol 22 (1) ◽  
pp. 94-104 ◽  
Author(s):  
David S. McClintock ◽  
Matthew T. Santore ◽  
Vivian Y. Lee ◽  
Joslyn Brunelle ◽  
G. R. Scott Budinger ◽  
...  

ABSTRACT The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax −/− bak −/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation.


Sign in / Sign up

Export Citation Format

Share Document