RESEARCH OF AERODYNAMIC MODES OF THE CLEANING SECTION OF THE DRYER DRUM

2021 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
И.Р. Шамсиев ◽  
◽  
А.П. Парпиев ◽  
Х.С. Усманов

In the technology of primary processing of cotton, there is a process of drying raw cotton. When this process is carried out, a mixture of a drying agent (hot air) with dust and light small trash impuritiesis formed in the drying drum. The task of these theoretical studies is to substantiate the variant of suction and purification of the air flow with trash impurities formed in the process of drying raw cotton, with the receipt of the main parametric characteristics and their boundary indicators.Key words: raw cotton, drying, drying drum, trash, dust, cleaning, fluid movement.

2015 ◽  
Author(s):  
Nic van Vuuren ◽  
Gabriele Brizi ◽  
Giacomo Buitoni ◽  
Lucio Postrioti ◽  
Carmine Ungaro
Keyword(s):  
Air Flow ◽  

2014 ◽  
Vol 627 ◽  
pp. 153-157
Author(s):  
Nawadee Srisiriwat ◽  
Chananchai Wutthithanyawat

The temperature distribution of hot air flow in heating zone of a rectangular duct has been investigated for drying application. The experimental set-up consists of a heater and a fan to generate the hot air flow in the range of temperature from 40 to 100°C and the range of air velocity between 1.20 and 1.57 m/s. An increase of the heater power supply increases the hot air temperature in the heating zone while an increase of air velocity forced by fan decreases the initial temperature at the same power supply provided to generate the hot air flow. The temperature distribution shows that the hot air temperature after transferring through air duct decreases with an increase of the length of the rectangular duct. These results are very important for the air flow temperature and velocity control strategy to apply for heating zone design in the drying process.


2021 ◽  
Vol 852 (1) ◽  
pp. 012017
Author(s):  
A V Chernyakov ◽  
V S Koval ◽  
M A Begunov ◽  
D N Algazin ◽  
K A Boytsov
Keyword(s):  
Air Flow ◽  

Author(s):  
Bandaru Nithin Kumar Varma

Abstract: The Hot air producing Oven is used to heat the sleeves which are used as raiser in casting purpose. The sleeves that are being manufactured are made of epoxy resin which consists of approximately 75% water and 25% mineral mix before heating and once the processes are complete i.e. the sleeves getting heated in the oven the product would turn into 35% water + 65% mix. The whole process would estimate the time around 4.5 hours. The first 2.5 hours the water is being removed from the sleeves in form of latent heat vaporization. The next 2 hours is use as the time for curing the them because of the flow of hot air through the sleeves. The processes time is evaluated keeping in mind that the heat transfer is happening in mixed convection. As they are placed vertically to the direction of air flow. The amount of heat transfer in terms of energy is evaluated for 4.5 hours in actual practise. The energy which is utilised in 4.5 hours is found and the same amount is consumed in 2.5 hours which is a solution solved theoretically by considering datum values. Keywords: epoxy resin, sleeves, latent heat, heat transfer, mixed convection.


2022 ◽  
Vol 16 (2) ◽  
pp. 205
Author(s):  
Rajani K. Mudi ◽  
Ujjwal Manikya Nath ◽  
Chanchal Dey

2021 ◽  
Vol 45 (01) ◽  
pp. 19-25
Author(s):  
D. K. Vyas ◽  
N. Seth ◽  
J. J. Chavda

A biomass combustor based dryer was evaluated with different biomass for drying of ginger. Biomass combustor based dryer consists of fuel hopper, combustion chamber, heat exchanger, grate for proper combustion of the combustible gas, chimney, ambient air inlet, hot air outlet and drying chamber. The system was evaluated at five fuel consumption rate (1 to 5 kg.h–1) and five air flow rate (100, 150, 200, 300 and 400 m3.h–1) using maize cobs, sized wood and saw dust briquettes for ginger drying. The experimental performances show that the hot air temperature inside the dryer vary between 36 to 81ºC for maize cobs, 53 to 85ºC for sized wood and 49 to 87ºC for biomass briquettes at tested air flow rate and fuel consumption rate in the system. The maximum efficiency of the system was found at the fuel consumption rate of 1 kg.h–1 and 400 m3.h–1 air flow rate using maize cobs, sized wood and saw dust briquettes as fuel respectively. The cost of operation of ginger drying at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate was Rs. 32.76, 34.26, 34.76 and 55 per hour using maize cobs, sized wood, saw dust briquettes and mechanical drying system, respectively. Hence, the drying of ginger in biomass combustor based dryer using maize cobs at 1 kg.h–1 fuel consumption rate and 400 m3/h air flow rate resulted in better performance.


Sign in / Sign up

Export Citation Format

Share Document