scholarly journals Sensitivity Approach of Optical Sensors of Cholesterol Detection through Gaussian Beam and Quasi-Gaussian Beam

2019 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Mohammad Budiyanto ◽  
Mohamad Yasin ◽  
Sulaiman Wadi Harun

Sensitivity is the comparison result between changes in output signal intensity and changes in input signal shift sensor. The purpose of this study was to analyze the sensitivity of fiber optic sensors using mathematical analysis through the Gaussian beam approach and quasi-Gaussian beam compared with the sensitivity of the optical sensor experimental results so that it can find the correct approach of sensitivity values between theory and experiment. The research method used mathematical analysis and experimental methods and mathematical descriptions for the description of the bundle optical fiber used in the experiment until the sensitivity equation is obtained. The results of the mathematical analysis of the Gaussian beam sensitivity values obtained of S = 0.004 mV ppm-1 and the sensitivity of quasi-Gaussian beam of S = 0.08 mV ppm-1. The results of the sensitivity of experimentally obtained S = 0.11 mV ppm-1. Based on the results of mathematical, experimental analysis, and sensor performance, sensitivity through the flat mirror reflection field, it can be concluded that the sensitivity of the optical fiber sensor tends to approach through the quasi-Gaussian beam approach to determine cholesterol concentration.

2019 ◽  
Vol 1417 ◽  
pp. 012005
Author(s):  
M Budiyanto ◽  
A R Purnomo ◽  
W B Sabtiawan ◽  
Suhariningsih ◽  
M Yasin

2009 ◽  
Vol 419-420 ◽  
pp. 293-296 ◽  
Author(s):  
Shiuh Chuan Her ◽  
Bo Ren Yao ◽  
Shien Chin Lan ◽  
Chun Yen Liu

Optical fiber sensors have a number of advantages over conventional electronic sensors such as light weight, small diameter and immunity to electromagnetic interference. Despite all the advantages of optical sensors, one must recognize that optical fibers are foreign entities to the host structure, therefore will induce stress concentration in the vicinity of the embedded sensor. As an optical sensor is embedded between plies, a lenticular resin pocket exists in the composite plies. The resin pocket acts as a crack-like region, and can form the site of the initiation of the delamination under mechanical loads. In this investigation, the geometry of the lenticular resin pocket around the optical sensor is derived basing on the principal of minimum potential energy. It shows that the geometry of the resin pocket is dependent on the stiffness of the plies, the stacking sequence, the diameter of the optical fiber and the curing pressure. The stress distributions in the resin pocket and in the laminated composites are obtained by using the finite element method. The numerical results demonstrate that the stress increases rapidly in the vicinity of the optical fiber sensor, causing a high stress concentration factor. The high stress field may produce delamination and fracture in the composite.


2018 ◽  
Vol 56 (1) ◽  
pp. 94-99
Author(s):  
N. Sogabe ◽  
S. Nakaue ◽  
K. Chikiri ◽  
M. Hayakawa

2019 ◽  
Vol 5 (0) ◽  
pp. 19-00095-19-00095
Author(s):  
Shogo FUJIMOTO ◽  
Suguru UEMURA ◽  
Nobuyuki IMANISHI ◽  
Shuichiro HIRAI

2021 ◽  
Vol 11 (1) ◽  
pp. 359
Author(s):  
Sung Tae Kim ◽  
Hyejin Yoon ◽  
Young-Hwan Park ◽  
Seung-Seop Jin ◽  
Soobong Shin ◽  
...  

This paper presents a multi-functional strand capable of introducing prestressing force in prestressed concrete (PSC) girders and sensing their static and dynamic behavior as well. This innovative strand is developed by replacing the core steel wire of the strand used in PSC structures with a carbon fiber-reinforced polymer (CFRP) wire with a built-in optical Fiber Bragg Grating (FBG) sensor. A full-scale girder specimen was fabricated by applying this multi-function strand to check the possibility of tracking the change of prestressing force at each construction stage. Moreover, dynamic data could be secured during dynamic loading tests without installing accelerometers and made it possible to obtain the natural frequencies of the structure. The results verified the capability to effectively manage the prestressing force in the PSC bridge structure by applying the PC strand with a built-in optical sensor known for its outstanding practicability and durability.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5262
Author(s):  
Qilin Duan ◽  
Yineng Liu ◽  
Shanshan Chang ◽  
Huanyang Chen ◽  
Jin-hui Chen

Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.


Sign in / Sign up

Export Citation Format

Share Document