scholarly journals Pemetaan Wilayah Lahan Basah Berdasarkan Data Penginderaan Jauh Optik Dan Radar

2020 ◽  
Vol 4 (2) ◽  
pp. 48-61
Author(s):  
Rian Nurtyawan ◽  
Ervan Muktamar Hendarna

ABSTRAKPada umumnya lahan basah dikelola menjadi area pertanian ataupun perkebunan. Fungsi lahan basah memiliki fungsi ekologis seperti pengendali banjir, pencegah intrusi air laut, erosi, pencemaran, dan pengendali iklim global. Data pengindraan jauh yang digunakan pengelolaan lahan basah yaitu pengindraan jauh optik dan radar. Tujuan dari penelitian ini adalah mengeksplorasi korelasi potensial dari data optik dan radar untuk mengamati dinamika pada kawasan lahan basah tersebut dan melakukan pemetaan. Metode yang digunakan pada pengindraan jauh optik yaitu LST (Land Surface Temperature) berdasarkan Citra Satelit Landsat-8 dan metode yang digunakan pada pengindraan jauh radar yaitu estimasi kelembaban tanah berdasarkan Citra Satelit Sentinel-1A. Hasil pengamatan dinamika dan pemetaan pada wilayah Kabupaten Bandung Raya memiliki nilai kelembaban tanah tertinggi pada Bulan Mei dengan nilai kelembapan tanah tanah rata-rata sebesar 20,9 % pada polarisasi VH. Suhu permukaan tanah terendah terjadi pada bulan Mei dengan nilai suhu rata-rata sebesar 19.5 °C. Kolerasi antara nilai kelembapan tanah tanah dan suhu permukaan tanah pada wilayah Kabupaten Bandung Raya berdasarkan metode koefisien determinasi sebesar R2=0.705 didapatkan bahwa semakin tinggi nilai kelembapan tanah tanah maka nilai suhu permukaan tanah akan semakin rendah.Kata kunci: Kawasan lahan basah, Pengindraan Jauh Optik, Pengindraan Jauh Radar, Pengamatan Dinamika, Pemetaan. ABSTRACTIn general wetlands managed become an area of agriculture or plantations. The extent of wetland that has been used can be damaged if it is not managed properly and integrated.. The purpose of this research is to explore the potential correlations between several parameters of optical and radar data to observe the dynamics of wetlands area and mapping the wetlands area. The methodology that was used in optical remote sensing is LST (Land Surface Temperature) based on Landsat-8 Satellite Image and the method used in remote radar sensing is estimation of soil moisture based on Sentinel-1A Satellite Image. The result of the observation in the area and mapping the dynamics in Bandung Raya District had the highest soil moisture values in May with 27% of soil water level in VH polarization and 78.1% in VV polarization and the lowest value in each month is 11.8% and the highest soil surface temperature in August with a value 37.9 ° C and the minimum value 19 ° C..Keywords: Wetland Area, Optical Remote Sensing, Remote Radar Sensing, Dynamics Observation, Mapping.

2020 ◽  
Vol 4 (2) ◽  
pp. 48-61
Author(s):  
Rian Nurtyawan ◽  
Ervan Muktamar Hendarna

ABSTRAKPada umumnya lahan basah dikelola menjadi area pertanian ataupun perkebunan. Fungsi lahan basah memiliki fungsi ekologis seperti pengendali banjir, pencegah intrusi air laut, erosi, pencemaran, dan pengendali iklim global. Data pengindraan jauh yang digunakan pengelolaan lahan basah yaitu pengindraan jauh optik dan radar. Tujuan dari penelitian ini adalah mengeksplorasi korelasi potensial dari data optik dan radar untuk mengamati dinamika pada kawasan lahan basah tersebut dan melakukan pemetaan. Metode yang digunakan pada pengindraan jauh optik yaitu LST (Land Surface Temperature) berdasarkan Citra Satelit Landsat-8 dan metode yang digunakan pada pengindraan jauh radar yaitu estimasi kelembaban tanah berdasarkan Citra Satelit Sentinel-1A. Hasil pengamatan dinamika dan pemetaan pada wilayah Kabupaten Bandung Raya memiliki nilai kelembaban tanah tertinggi pada Bulan Mei dengan nilai kelembapan tanah tanah rata-rata sebesar 20,9 % pada polarisasi VH. Suhu permukaan tanah terendah terjadi pada bulan Mei dengan nilai suhu rata-rata sebesar 19.5 °C. Kolerasi antara nilai kelembapan tanah tanah dan suhu permukaan tanah pada wilayah Kabupaten Bandung Raya berdasarkan metode koefisien determinasi sebesar R2=0.705 didapatkan bahwa semakin tinggi nilai kelembapan tanah tanah maka nilai suhu permukaan tanah akan semakin rendah.Kata kunci: Kawasan lahan basah, Pengindraan Jauh Optik, Pengindraan Jauh Radar, Pengamatan Dinamika, Pemetaan. ABSTRACTIn general wetlands managed become an area of agriculture or plantations. The extent of wetland that has been used can be damaged if it is not managed properly and integrated.. The purpose of this research is to explore the potential correlations between several parameters of optical and radar data to observe the dynamics of wetlands area and mapping the wetlands area. The methodology that was used in optical remote sensing is LST (Land Surface Temperature) based on Landsat-8 Satellite Image and the method used in remote radar sensing is estimation of soil moisture based on Sentinel-1A Satellite Image. The result of the observation in the area and mapping the dynamics in Bandung Raya District had the highest soil moisture values in May with 27% of soil water level in VH polarization and 78.1% in VV polarization and the lowest value in each month is 11.8% and the highest soil surface temperature in August with a value 37.9 ° C and the minimum value 19 ° C..Keywords: Wetland Area, Optical Remote Sensing, Remote Radar Sensing, Dynamics Observation, Mapping.


Author(s):  
A. Rajani, Dr. S.Varadarajan

Land Surface Temperature (LST) quantification is needed in various applications like temporal analysis, identification of global warming, land use or land cover, water management, soil moisture estimation and natural disasters. The objective of this study is estimation as well as validation of temperature data at 14 Automatic Weather Stations (AWS) in Chittoor District of Andhra Pradesh with LST extracted by using remote sensing as well as Geographic Information System (GIS). Satellite data considered for estimation purpose is LANDSAT 8. Sensor data used for assessment of LST are OLI (Operational Land Imager) and TIR (Thermal Infrared). Thermal band  contains spectral bands of 10 and 11 were considered for evaluating LST independently by using algorithm called Mono Window Algorithm (MWA). Land Surface Emissivity (LSE) is the vital parameter for calculating LST. The LSE estimation requires NDVI (Normalized Difference Vegetation Index) which is computed by using Band 4 (visible Red band) and band 5 (Near-Infra Red band) spectral radiance bands. Thermal band images having wavelength 11.2 µm and 12.5 µm of 30th May, 2015 and 21st October, 2015 were processed for the analysis of LST. Later on validation of estimated LST through in-suite temperature data obtained from 14 AWS stations in Chittoor district was carried out. The end results showed that, the LST retrieved by using proposed method achieved 5 per cent greater correlation coefficient (r) compared to LST retrieved by using existing method which is based on band 10.


2019 ◽  
Vol 11 (2) ◽  
pp. 138 ◽  
Author(s):  
Chaolei Zheng ◽  
Li Jia ◽  
Guangcheng Hu ◽  
Jing Lu

Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these problems. It is critical to study the spatiotemporal pattern of ET in Thailand to support the local water resource management. In the current study, daily ET was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface temperature—vegetation index triangle method, which was used to estimate ET in the clear days. The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET, and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements were found between the estimated daily ET and flux tower observations with root mean square error ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET. The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly impacted by the monsoon climate.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5399 ◽  
Author(s):  
Ghassem R. Asrar

A combination of multispectral visible, infra-red and microwave sensors on the constellation of international Earth-observing satellites are providing unprecedented observations for all Earth domains over multiple decades (i.e., atmosphere, land, oceans and polar regions). This Special Issue of Sensors is dedicated to papers that describe such advances in the field of Earth remote sensing and their applications to advance understanding of Earth’s planetary system and applying the resulting knowledge and information to meet the societal needs during recent decades. The papers accepted and published in this issue convey the exciting scientific and technical challenges and opportunities for remote sensing of all domains of Earth system, including terrestrial, aquatic and coastal ecosystems; bathymetry of coasts and islands; oceans and lakes; measurement of soil moisture and land surface temperature that affects both water resources and food production; and advances in use of sun-induced fluorescence (SIF) in measuring and monitoring the contribution of terrestrial vegetation in the cycling of carbon in Earth’s system. Measurements of SIF, for example, has had a profound impact on the field of terrestrial ecosystems research and modelling. The Earth Polychromatic Imaging Camera (EPIC) instrument on the Deep Space Climate Observatory (DSCVR) satellite located at the Sun–Earth Lagrange Point One, about 1.5 million miles away from Earth, is providing unique observations of the Earth’s full sun-lit disk from pole-to-pole and minute-by-minute, which overcomes a major limitation in temporal coverage of Earth by other polar-orbiting Earth-observing satellites. Active and passive microwave remote sensing instruments allow all-weather measurements and monitoring of clouds, weather phenomena, land-surface temperature and soil moisture by overcoming the presence of clouds that affect measurements by visible and infrared sensors. The use of powerful in-space lasers is allowing scientists and engineers to measure and monitor rapidly changing ice sheets in polar regions and mountain glaciers. These sensors and their measurements that are deployed on major space-based observatories and small- and micro-satellites, and the scientific knowledge they provide, are enhancing our understanding of planet Earth and development of Earth system models that are used increasingly to project future conditions due to Earth’s rapidly changing environmental conditions. Such knowledge and information are benefiting people, businesses and governments worldwide.


2020 ◽  
Author(s):  
Mikias Biazen Molla

Abstract This investigation was conducted for the estimation of the temporal land surface temperature value using thermal remote sensing of Landsat-8 (OLI) Data in Hawassa City Administration, Ethiopia. Satellite datasets of Landsat-7 (ETM+) for 22nd March 2002 and Landsat-8 (OLI) of 22nd March 2019 were taken for this study. Different algorisms were used to estimate the Normalized Difference Vegetation Index threshold from the Red and Near-Infrared band and the ground earth's surface emissivity esteem is legitimately recovered from the thermal infrared by coordinating with the outcome got from MODIS information. The land use land cover map of the city was prepared with better accuracy using the on-screen classification technique. The spatial distribution of surface temperature of the city range from 6.62°C to 22.54°C with a mean of 14.58°C and a standard deviation of 11.25 in the year of march 22nd 2002. The LST result derived from Landsat 8 for March 22nd, 2019, ranges from 11.97°C to 35.5°C with a mean of 23.735 °C and a standard deviation of 16.64. In both years the higher LST values correspond to built-up/settlement and bare/open lands of the city; whereas, lower LST values were observed in vegetation (trees/woodlot, shrubs, and grass forested) area. Urban expansion (built-up area roads, and another impervious surface), decline in vegetation levels due to deforestation and increasing population density. Increasing an evergreen tree and green space coverage, design and develop city parks and rehabilitate the existing degraded natural environments are among the recommended strategy to reduce the rate of LST.


2018 ◽  
Vol 55 (4C) ◽  
pp. 129
Author(s):  
Nguyen Bac Giang

This paper presents the analysis of the effect of urban green space types on land surface temperature in Hue city. Data are collected with temperature monitoring results from each green space type and the interpretation of surface temperature based on Landsat 8 satellite image data to determine temperatures at different times of the year. Results showed that there was a significant correlation between types of urban green space and the surface temperature. Types of green space with a large area and vegetation indexes have a greater effect on temperature than areas with a smaller green space do. Green space types including forest green space, dedicated green space and agriculture green space have the most effect on the surface temperature. The forest area has the greatest influence on the temperature with a temperature difference of more than 1.6 degrees Celsius at 9:00 in the daytime. Besides, the results extracted from satellite images also show that the area of urban green space going to be reduced makes a contribution to increase the surface temperature of urban areas. The study results have established foundation for planning the green spaces in climate change challenges in Hue City.


2019 ◽  
Vol 65 (No. 1) ◽  
pp. 27-32 ◽  
Author(s):  
Marjan Firoozy Nejad ◽  
Amin Zoratipour

Riparian forest plays a significant role in ecosystems. Also, research on land surface temperature and soil moisture is essential in earth science and forest studies. Because measuring methods are difficult to apply in large areas and especially in dense forests, in this study normalized difference moisture index (NDMI) and land surface temperature (LST) were estimated using the infrared thermal method by data of Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS) in the Karun riparian forest that is of ecological importance in the Khuzestan province of Iran. The results showed that the accuracy for estimated NDMI and LST was appropriate (root mean square error = 3.45). In addition, the used polynomial support vector machine algorithm for classification by four classes (forest, agriculture, river, and others) and the validity of classification in these areas were suitable (overall accuracy = 95%, kappa coefficient = 0.93). Also, the NDMI index was dependent on changes in LST and Pearson coefficients were 0.94 and 0.84 for Landsat 8 and MODIS data, respectively. The average temperature of the area was obtained as 43.22 and 42.77 for Landsat 8 and MODIS, respectively. Finally, more protection of this forest against LST enhancement and reduction in soil moisture is necessary.


2020 ◽  
Vol 9 (4) ◽  
pp. 184-191
Author(s):  
Sergey Arkadyevich Shurakov ◽  
Aleksey Nikolaevich Chashchin

This paper discusses the possibilities of using Landsat 8 remote sensing data for assessing the temperature conditions of aquatic landscapes when studying the abundance and density of gulls. The study of the ornithological situation was carried out on the territory of the Perm international airport of the Perm Region, where the black-headed gull is an unfavorable factor in the safety of passenger aircraft flights. Within the boundaries of the region, 5 reservoirs were identified. A method for calculating the surface temperature from a multispectral satellite image of the Landsat 8 series is described in detail with the presentation of primary data sources, atmospheric parameters and obtaining raster coverage with a resolution of 30 meters per pixel. The tool used for the calculation is the Land Surface Temperature module of the QGIS software. The paper presents maps of temperature within the area of conducted ornithological surveys and the density of gulls. The densities of birds for individual bodies of water are calculated using the Spatial Analyst module of the ArcGIS program with the kernel density tool. According to the research results, a close correlation was established between the attractiveness of reservoirs for gulls and water temperature. The correlation coefficients were 0,83 and 0,71, respectively, with the abundance and density of gulls.


Sign in / Sign up

Export Citation Format

Share Document