scholarly journals Elaeis oleifera (Kunth) Cortés: A neglected palm from the Ecuadorian Amazon

Author(s):  
Rommel Montúfar ◽  
Claude Louise ◽  
Timothy Tranbarger

Knowledge of the biology of Ecuadorian palms remains very limited. A particular case is the American oil palm, Elaeis oleifera (Kunth) Cortés, first described in Ecuador in 1986. The genus Elaeis has a trans-Atlantic (Africa-America) distribution, with E. oleifera from the Neotropics and E. guineensis Jacq. from Africa. It has been hypothesized that E. oleifera derives from populations of E. guineensis, which diverged 15 million years ago. At the local level, the populations of E. oleifera have a disjunctive distribution, with isolated populations within the Amazon and Caribbean regions, frequently associated with human or archaeological settlements. Despite the spatial and historical separation between the two species, there are no reproductive barriers to the generation of fertile hybrids. This important reproductive characteristic has allowed E. oleifera to become a major source of genetic variation for the improvement and adaptability of commercial populations of E. guineensis throughout the planet. The Ecuadorian populations of E. oleifera from Taisha - with morphological, reproductive and agronomically important biochemical characteristics -  have been used for the creation of commercial hybrids, which today are planted in tropical regions.

Author(s):  
Jessica Vanessa Wosniak Corrêa ◽  
Gabriela Gomes Weber ◽  
André Ricardo Zeist ◽  
Juliano Tadeu Vilela de Resende ◽  
Paulo Roberto Da-Silva

Human Biology ◽  
2004 ◽  
Vol 76 (1) ◽  
pp. 15-31 ◽  
Author(s):  
D Marjanovic ◽  
L Kapur ◽  
K Drobnic ◽  
Bruce Budowle ◽  
N Pojskic ◽  
...  

Author(s):  
Donald M. Waller ◽  
Lukas F. Keller

Inbreeding (also referred to as “consanguinity”) occurs when mates are related to each other due to incest, assortative mating, small population size, or population sub-structuring. Inbreeding results in an excess of homozygotes and hence a deficiency of heterozygotes. This, in turn, exposes recessive genetic variation otherwise hidden by heterozygosity with dominant alleles relative to random mating. Interest in inbreeding arose from its use in animal and plant breeding programs to expose such variation and to fix variants in genetically homogenous lines. Starting with Gregor Mendel’s experiments with peas, geneticists have widely exploited inbreeding as a research tool, leading R. C. Lewontin to conclude that “Every discovery in classical and population genetics has depended on some sort of inbreeding experiment” (see Lewontin’s 1965 article “The Theory of Inbreeding.” Science 150:1800–1801). Charles Darwin wrote an entire book on the effects of inbreeding as measured in fifty-two taxa of plants. He and others noted that most plants and animals go to great length to avoid inbreeding, suggesting that inbreeding has high costs that often outweigh the benefits of inbreeding. Benefits of inbreeding include increased genetic transmission while the costs of inbreeding manifest as inbreeding depression when deleterious, mostly recessive alleles otherwise hidden as heterozygotes emerge in homozygote form upon inbreeding. Inbreeding also reduces fitness when heterozygotes are more fit than both homozygotes, but such overdominance is rare. Recurrent mutation continuously generates deleterious recessive alleles that create a genetic “load” of deleterious mutations mostly hidden within heterozygotes in outcrossing populations. Upon inbreeding, the load is expressed when deleterious alleles segregate as homozygotes, causing often substantial inbreeding depression. Although inbreeding alone does not change allele frequencies, it does redistribute genetic variation, reducing it within families or populations while increasing it among families or populations. Inbreeding also increases selection by exposing deleterious recessive mutations, a process called purging that can deplete genetic variation. For all these reasons, inbreeding is a central concept in evolutionary biology. Inbreeding is also central to conservation biology as small and isolated populations become prone to inbreeding and thus suffer inbreeding depression. Inbreeding can reduce population viability and increase extinction risk by reducing individual survival and/or reproduction. Such effects can often be reversed, however, by introducing new genetic material that re-establishes heterozygosity (“genetic rescue”). The current availability of DNA sequence and expression data is now allowing more detailed analyses of the causes and evolutionary consequences of inbreeding.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1287
Author(s):  
Rahmah N. Al-Qthanin ◽  
Samah A. Alharbi

Avicennia marina (Forssk.) Vierh is distributed in patches along the Farasan archipelago coast and is the most common mangrove species in the Red Sea. However, to date, no studies have been directed towards understanding its genetic variation in the Farasan archipelago. In this investigation, genetic variations within and among natural populations of Avicennia marina in the Farasan archipelago were studied using 15 microsatellite markers. The study found 142 alleles on 15 loci in nine populations. The observed (Ho) and expected (He) heterozygosity values were 0.351 and 0.391, respectively, which are much lower than those of earlier studies on A. marina in the Arabian Gulf. An inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (FST = 0.301) was similar to other mangrove species. Our findings suggest that the sea current direction and coastal geomorphology might affect genetic dispersal of A. marina. The more isolated populations with fewer connections by sea currents exhibited lower genetic variation and differentiation between populations. The genetic clustering of populations fell into three main groups—Group 1 (populations of Farasan Alkabir Island), Group 2 (populations of Sajid Island), and Group 3 (mix of one population of Farasan Alkabir Island and a population of Zifaf Island). More genetic variation and less genetic differentiation occurred when the population was not isolated and had a direct connection with sea currents. Both of these factors contributed to limited propagule dispersal and produced significant structures among the population. It is expected that the results of this research will be useful in determining policy and species-conservation strategies and in the rehabilitation of A. marina mangrove stands on the Farasan islands in an effort to save this significant natural resource.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2005 ◽  
Vol 53 (8) ◽  
pp. 781 ◽  
Author(s):  
Mayra S. Caldiz ◽  
Andrea C. Premoli

We evaluated the amount and distribution of genetic variation in large and small isolated populations of Luma apiculata (DC.) Burret (Myrtaceae) in north-western Patagonia. The hypothesis tested was that isolated smaller populations were more affected by drift and isolation than large stands. Higher genetic diversity was predicted in the latter. Fresh leaf material for isozyme electrophoresis was collected from 30 individuals in four isolated and two large and continuous stands (Quetrihue Peninsula and Punta Norte, Isla Victoria). Five subpopulations were sampled in both large stands, and in addition, three regeneration gaps in Punta Norte. Eleven loci were resolved; 91% were polymorphic in at least one population. Isolated and large populations had similar levels of genetic variation. Reduced observed heterozygosity and elevated inbreeding were measured in subpopulations and regeneration gaps within dense stands. Although small populations consist of a reduced number of individuals they are mostly coastal populations nearby rivers and lakes that may maintain considerable gene flow with other faraway populations counteracting the effects of drift. In addition to potential selfing, increased inbreeding within large populations and regeneration gaps may be due to an intra-population Wahlund effect from local seedling establishment and vegetative spread, resulting in clustered cohorts of similar genotypes.


1982 ◽  
Vol 14 (2) ◽  
pp. 241-247 ◽  
Author(s):  
John H. Relethford

SummaryThe estimation of genetic similarity from correspondence of surnames (isonymy) allows investigation of historical population structure. This study uses surname data from seven isolates located along the west coast of Ireland during the 1890s to assess geographic and historic influences on population structure. Observed genetic variation among populations shows a close fit with the expected isolation by distance model, with estimated parameters of isolation and migration being similar to those obtained in other studies of isolated populations. Local genetic variation appears to be due primarily to the size of the local breeding population, with deviations being explained in terms of recent emigration.


Sign in / Sign up

Export Citation Format

Share Document