scholarly journals Climate change mitigation through carbon dioxide (CO2) sequestration in community reserved forests of northwest Tanzania

2020 ◽  
Vol 5 (3) ◽  
pp. 231-240
Author(s):  
Gisandu K. Malunguja ◽  
Ashalata Devi ◽  
Mhuji Kilonzo ◽  
Chrispinus D.K. Rubanza

Forests play a key role in climate change mitigation through sequestering and storing carbon dioxide from the atmosphere. However, there is inadequate information about carbon accumulation and sequestered by community reserved forests in Tanzania. A study was carried to quantify the amount of carbon sequestered in two forests namely; Nyasamba and Bubinza of Kishapu district, northwestern Tanzania. A ground-based field survey design under a systematic sampling technique was adopted. A total of 45 circular plots (15 m radius) along transects were established. The distances between transect and plots were maintained at 550 and 300 m, respectively. Data on herbaceous C stocking potential was determined using destructive harvest method while tree carbon stocking was estimated by allometric equations. The collected data were organized on excel datasheet followed by descriptive analysis for quantitative information using Computer Microsoft Excel and SPSS software version 20, while soil samples were analyzed based on the standard laboratory procedures. Results revealed higher carbon sequestration of 102.49±39.87 and 117.52±10.27 for soil pools than plants both herbaceous (3.01±1.12 and 6.27±3.79 t CO2e/yr) and trees (5.70±3.15 and 6.60±2.88 t CO2e/yr) for Nyasamba and Bubinza respectively. The study recorded a potential variation of soil carbon sequestration, which varied across depths category (P < 0.05). However, there was no difference across sites (P >0.05) and species (P > 0.05) for herbaceous and trees. The findings of this study portrayed a significantly low value for carbon stocking and sequestration potential for enhanced climate change mitigation. Therefore, proper management of community reserved forest is required to accumulate more C for enhancing stocking potential hence climate change mitigation through CO2 sequestration offsets mechanism.

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Saurav Kalita ◽  
Hanna Karlsson Potter ◽  
Martin Weih ◽  
Christel Baum ◽  
Åke Nordberg ◽  
...  

Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 922 ◽  
Author(s):  
Rafaella C. Mayrinck ◽  
Colin P. Laroque ◽  
Beyhan Y. Amichev ◽  
Ken Van Rees

Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 124
Author(s):  
Gebermedihin Ambaw ◽  
John W. Recha ◽  
Abebe Nigussie ◽  
Dawit Solomon ◽  
Maren Radeny

Climate-Smart Villages (CSVs) were established by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) in the East African countries of Kenya, Tanzania and Uganda to test and promote a portfolio of climate-smart agriculture (CSA) practices that have climate change mitigation potential. This study evaluated the soil carbon sequestration potential of these CSVs compared to the control land use that did not have CSA practices. At the one-meter depth, soil carbon stocks increased by 20–70%, 70–86%, and 51–110% in Kenya, Tanzania and Uganda CSVs, respectively, compared to control. Consequently, CSVs contributed to the reduction of emissions by 87–420 Mg CO2 eq ha−1. In the topsoil (0–15 cm), CSVs sequestered almost twice more soil carbon than the control and subsequently emissions were reduced by 42–158 Mg CO2 eq ha−1 under CSVs. The annual increase in carbon sequestration under CSVs ranged between 1.6 and 6.2 Mg C ha−1 yr−1 and substantially varied between the CSA land use types. The forests sequestered the highest soil carbon (5–6 Mg C ha−1 yr−1), followed by grasslands and croplands. The forest topsoil also had lower bulk density compared to the control. The findings suggest that CSA practices implemented through the CSVs approach contribute to climate change mitigation through soil carbon sequestration.


Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Wen-Tien Tsai

Based on high carbon emissions in recent years (i.e., about 11 metric tons in 2018) per capita in terms of carbon dioxide equivalents, Taiwan has actively development greenhouse gas (GHG) reduction action plans. One of the action plans has been to promote afforestation and reforestation in non-forested lands for carbon sequestration. Thus, this paper aims to address the forest resources in Taiwan by using the latest national survey, reporting on an interactive analysis of forest carbon sequestration, GHG emissions, and climate-change mitigation policies. In this regard, the methodology is based on the official websites of forest resources, GHG emissions, and carbon sequestration from the yearbooks, national statistics, and regulations relevant to the mitigation policies in the forestry sector. It is found that Taiwan’s forest area is estimated to be 2.197 million hectares, which corresponds to a total forest stock volume of about 502.0 million cubic meters. During the period of 1990–2018, the change in total carbon sequestration did not vary much (with the exception of 2009), decreasing from 23.4 million metric tons in 1990 to 21.4 million metric tons in 2018. Compared to the total carbon dioxide emissions (i.e., 102.4 million metric tons in 1990 and 282.8 million metric tons in 2018), the contribution to GHG mitigation in the forestry sector shows a declining trend. However, biomass (i.e., wood) carbon sequestration indicates a slight increase from 20.4 million metric tons in 2010 to 20.7 million metric tons in 2018 due to the afforestation policy. Obviously, regulatory policies, based on the Forestry Act and the Greenhouse Gas Reduction & Management Act in 2015, play a vital role in mitigating GHG emissions in Taiwan. The discussion on the regulations is further addressed to highlight climate-change mitigation policies in Taiwan’s forestry sector.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Antonín Lupíšek ◽  
Tomáš Trubačík ◽  
Petr Holub

One of the major anthropogenic sources of greenhouse gases is the operation of building stock. Improving its energy efficiency has the potential to significantly contribute to achieving climate change mitigation targets. The purpose of this study was to roughly estimate such potential for the operation of the national building stock of Czechia to steer the national debate on the development of related national plans. The estimation is based on a simplified energy model of the Czech building stock that consists of sub-models of residential and nonresidential building stocks, for which their future energy consumptions, shares of energy carriers and sources, and emission factors were modeled in four scenarios. Uncertainties from the approximation of the emission factors were investigated in a sensitivity analysis. The results showed that the operation of the Czech building stock in 2016 totaled 36.9 Mt CO2, which represented 34.6% of the total national carbon dioxide emissions. The four building stock scenarios could produce reductions in the carbon dioxide emissions of between 28% and 93% by 2050, when also considering on-side production from photovoltaics. The implementation of the most ambitious scenario would represent a drop in national CO2 yearly emissions by 43.2% by 2050 (compared to 2016).


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dipankar Deb ◽  
Mary Jamatia ◽  
Jaba Debbarma ◽  
Jitendra Ahirwal ◽  
Sourabh Deb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document