scholarly journals Soil Carbon Modelling in Salix Biomass Plantations: Variety Determines Carbon Sequestration and Climate Impacts

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Saurav Kalita ◽  
Hanna Karlsson Potter ◽  
Martin Weih ◽  
Christel Baum ◽  
Åke Nordberg ◽  
...  

Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 922 ◽  
Author(s):  
Rafaella C. Mayrinck ◽  
Colin P. Laroque ◽  
Beyhan Y. Amichev ◽  
Ken Van Rees

Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.


2020 ◽  
Author(s):  
Carlos A. Sierra ◽  
Susan E. Crow ◽  
Martin Heimann ◽  
Holger Metzler ◽  
Ernst-Detleft Schulze

Abstract. Ecosystems play a fundamental role in climate change mitigation by taking up carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions can be quantified by global warming potentials, it is not necessarily clear what are appropriate formal metrics to assess climate benefits of carbon removals by sinks. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect of taking up carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back to the atmosphere. To quantify CBS, we also propose a formal definition of carbon sequestration (CS) as the integral of an amount of carbon taken up from the atmosphere stored over the time horizon it remains in an ecosystem. Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of carbon retention) in carbon sinks, which can vary largely for different ecosystems or management types. In three separate examples, we show how to compute and apply these metrics to compare different carbon management practices in forestry and soils. We believe these metrics can be useful in resolving current controversies about the management of ecosystems for climate change mitigation.


2021 ◽  
Author(s):  
Lazaro Elibariki Nnko

Worldwide agroforestry has been recognized as a potential greenhouse gases mitigation strategy under Kyoto protocol. And this is due to its potential in carbon sequestration. There are several agroforestry technologies with different rate in carbon sequestration. In that respect carbon sequestration can depend on type of technology, climate, time since land use change and previous land use. Our knowledge in this topic from the tropical countries such as Tanzania is how ever very limited. To address this challenge this study was undertaken in Kilombero District where the local community are practicing various agroforestry technologies. The objective of this study was to understand the carbon sequestration in different trees species in agroforestry technologies and also to understand which agroforestry technology provide the greatest benefit in term of carbon sequestration. Ecological survey was conducted and a total of 90 plot engaged in different agroforestry technologies were randomly selected from three villages of different altitudinal range. Pivot table was used in analysis and allometric equation was used for computing biomass and carbon. The result shows that Mangifera indica contributed highest carbon over all the tree species encountered during ecological survey with 189.88 Mg C ha−1. Home garden, Mixed intercropping, Parkland and Boundary with 19 514.19 MgCha−1, 648.44MgCha−1,144.79 MgCha−1 and 139.29 Mg C ha−1 respectively were the agroforestry technology practiced in Kilombero. From the results Home garden contributed more to carbon sequestration and this study results can be used to inform practitioners and policy makers on the most effective agroforestry technologies for carbon sequestration since agroforestry technologies are expected to play important role as climate change mitigation strategy.


2020 ◽  
Vol 5 (3) ◽  
pp. 231-240
Author(s):  
Gisandu K. Malunguja ◽  
Ashalata Devi ◽  
Mhuji Kilonzo ◽  
Chrispinus D.K. Rubanza

Forests play a key role in climate change mitigation through sequestering and storing carbon dioxide from the atmosphere. However, there is inadequate information about carbon accumulation and sequestered by community reserved forests in Tanzania. A study was carried to quantify the amount of carbon sequestered in two forests namely; Nyasamba and Bubinza of Kishapu district, northwestern Tanzania. A ground-based field survey design under a systematic sampling technique was adopted. A total of 45 circular plots (15 m radius) along transects were established. The distances between transect and plots were maintained at 550 and 300 m, respectively. Data on herbaceous C stocking potential was determined using destructive harvest method while tree carbon stocking was estimated by allometric equations. The collected data were organized on excel datasheet followed by descriptive analysis for quantitative information using Computer Microsoft Excel and SPSS software version 20, while soil samples were analyzed based on the standard laboratory procedures. Results revealed higher carbon sequestration of 102.49±39.87 and 117.52±10.27 for soil pools than plants both herbaceous (3.01±1.12 and 6.27±3.79 t CO2e/yr) and trees (5.70±3.15 and 6.60±2.88 t CO2e/yr) for Nyasamba and Bubinza respectively. The study recorded a potential variation of soil carbon sequestration, which varied across depths category (P < 0.05). However, there was no difference across sites (P >0.05) and species (P > 0.05) for herbaceous and trees. The findings of this study portrayed a significantly low value for carbon stocking and sequestration potential for enhanced climate change mitigation. Therefore, proper management of community reserved forest is required to accumulate more C for enhancing stocking potential hence climate change mitigation through CO2 sequestration offsets mechanism.


2020 ◽  
Author(s):  
Carlos Sierra ◽  
Susan Crow ◽  
Martin Heimann ◽  
Holger Metzler ◽  
Ernst-Detlef Schulze

&lt;p&gt;Ecosystems play a fundamental role in climate change mitigation by taking up carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions can be quantified by global warming potentials, there is not a formal metric to assess climate benefits of carbon removals by sinks. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect of taking up carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back to the atmosphere. &amp;#160;To quantify CBS, we also propose a formal definition of carbon sequestration (CS) as the integral of a sequestered amount of carbon over the time horizon it remains stored in an ecosystem. Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of carbon retention) in carbon sinks, which can vary largely for different ecosystems or management types. In three separate examples, we show how to compare different carbon management practices in forestry and soils using CS and CBS. We believe these metrics can be useful in resolving current controversies about the management of ecosystems for climate change mitigation.&amp;#160;&lt;/p&gt;


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 124
Author(s):  
Gebermedihin Ambaw ◽  
John W. Recha ◽  
Abebe Nigussie ◽  
Dawit Solomon ◽  
Maren Radeny

Climate-Smart Villages (CSVs) were established by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) in the East African countries of Kenya, Tanzania and Uganda to test and promote a portfolio of climate-smart agriculture (CSA) practices that have climate change mitigation potential. This study evaluated the soil carbon sequestration potential of these CSVs compared to the control land use that did not have CSA practices. At the one-meter depth, soil carbon stocks increased by 20–70%, 70–86%, and 51–110% in Kenya, Tanzania and Uganda CSVs, respectively, compared to control. Consequently, CSVs contributed to the reduction of emissions by 87–420 Mg CO2 eq ha−1. In the topsoil (0–15 cm), CSVs sequestered almost twice more soil carbon than the control and subsequently emissions were reduced by 42–158 Mg CO2 eq ha−1 under CSVs. The annual increase in carbon sequestration under CSVs ranged between 1.6 and 6.2 Mg C ha−1 yr−1 and substantially varied between the CSA land use types. The forests sequestered the highest soil carbon (5–6 Mg C ha−1 yr−1), followed by grasslands and croplands. The forest topsoil also had lower bulk density compared to the control. The findings suggest that CSA practices implemented through the CSVs approach contribute to climate change mitigation through soil carbon sequestration.


Sign in / Sign up

Export Citation Format

Share Document