scholarly journals Building Performance Optimization for Operational Rule Extraction

Author(s):  
Burak Gunay ◽  
Mohamed Ouf ◽  
Guy Newsham ◽  
William O'Brien
2021 ◽  
Vol 11 (1) ◽  
pp. 6603-6608
Author(s):  
A. Serbouti ◽  
M. Rattal ◽  
E. M. Oualim ◽  
A. Mouhsen

Buildings are accountable for nearly 40% of global greenhouse gas emissions. Their overall efficiency is thus a major pillar to optimize energy consumption and to mitigate engendered global warming. The current work takes part in this global dynamic. Indeed, we developed a standalone decision-aid tool based on sensitivity analysis, multiobjective optimization, and artificial neural networks to design a new generation of energy-efficient buildings. The tool aims to allow benefiting from Sobol’ sensitivity analysis samplings to instantaneously generate sensitivity indexes and perform multicriteria optimizations. This efficient process allows both understanding buildings’ complex behavior (by ranking the impact of the inputs parameters on the outputs and highlighting their interactions) and optimizing their overall performance. The main advantages of this method are the time gaining and the provision of relevant outputs to analyze the buildings’ design. The tool was successfully used to solve constrained 13-input parameters with 5-criteria on TRNSYS simulation program, considering the impact of global warming


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 636
Author(s):  
Seyedeh Farzaneh Mousavi Motlagh ◽  
Ali Sohani ◽  
Mohammad Djavad Saghafi ◽  
Hoseyn Sayyaadi ◽  
Benedetto Nastasi

Owing to the current challenges in energy and environmental crises, improving buildings, as one of the biggest concerns and contributors to these issues, is increasingly receiving attention from the world. Due to a variety of choices and situations for improving buildings, it is important to review the building performance optimization studies to find the proper solution. In this paper, these studies are reviewed by analyzing all the different key parameters involved in the optimization process, including the considered decision variables, objective functions, constraints, and case studies, along with the software programs and optimization algorithms employed. As the core literature, 44 investigations recently published are considered and compared. The current investigation provides sufficient information for all the experts in the building sector, such as architects and mechanical engineers. It is noticed that EnergyPlus and MATLAB have been employed more than other software for building simulation and optimization, respectively. In addition, among the nine different aspects that have been optimized in the literature, energy consumption, thermal comfort, and economic benefits are the first, second, and third most optimized, having shares of 38.6%, 22.7%, and 17%, respectively.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1475
Author(s):  
Abdullahi Ahmed ◽  
Monica Mateo-Garcia ◽  
Andrew Arewa ◽  
Kassim Caratella

Building performance improvement through low-energy renovation traditionally involves building performance diagnostics of the existing building, technology evaluation, selection and implementation. Effective building performance diagnostics, post-retrofit assessment and user engagement are essential to deliver performance as well as achieving socio-economic and environmental benefits at every stage of the renovation project life cycle. User’s views are often ignored when renovating a building, causing sub-optimal energy performance, user comfort and wellbeing. This paper seeks to critically evaluate the low-energy renovation process and the role of user and stakeholder engagement in the strategic implementation of low-energy retrofit technologies for performance improvement of higher education buildings. The research focuses on renovation methodology, innovative materials/systems and end-user engagement throughout the renovation project phases (pre-renovation, the renovation process and post renovation). A mixed research method was adopted, which includes building performance modelling, monitoring and user evaluation questionnaires pre and post-renovation. The research is part of European Union (EU)-funded project, targeting 50% reduction in energy consumption using innovative materials and technologies in existing public buildings. The surveys allow comparative analysis of comfort levels and user satisfaction as an indicator of the efficacy of renovation measures. A new renovation process and user engagement framework was developed. The findings suggest that there is a direct relationship between retrofit intervention, improving energy performance of low-carbon buildings and the comfort of occupants. The technologies and strategies also appear to have different impacts on user satisfaction.


Sign in / Sign up

Export Citation Format

Share Document