scholarly journals The Effect of Dynamic Primary Energy Factors On Building Energy Performance

Author(s):  
Kjartan Van den Brande ◽  
Sam Hamels ◽  
Jelle Laverge ◽  
Michel De Paepe ◽  
Arnold Janssens ◽  
...  
2017 ◽  
Vol 39 (4) ◽  
pp. 492-500 ◽  
Author(s):  
Roger Hitchin

This Technical Note describes a framework for handling the inherent complexities of carbon emission and primary energy factors for networked electricity supply systems within building energy codes and similar policy instruments. The proposed framework reflects the main characteristics of carbon emissions from such networked supplies, while retaining a level of complexity (and simplification) comparable to that of procedures used in existing building energy codes. The main issues that are addressed are the time-varying nature of factors for networked supply, the impact of variability and curtailment for variable and intermittent renewable sources of electricity and relationship between “marginal” factors and “average” factors. These are important issues as the currently common use of annual system-average factors can result in misleading guidance as to the most effective ways of reducing carbon emissions or primary energy demand. The note first explains the relationship between building energy performance ratings and networked electric supplies. It then discusses the characteristics of electricity demand and the networked supply systems before proposing and discussing the framework. Practical application: A framework that can improve the reliability of building energy performance rating based on carbon emissions or primary energy factors.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Sign in / Sign up

Export Citation Format

Share Document