scholarly journals Drug delivery systems for potential treatment of intracellular bacterial infections

10.2741/3627 ◽  
2010 ◽  
Vol 15 (1) ◽  
pp. 397 ◽  
Author(s):  
Edurne Imbuluzqueta

2018 ◽  
Vol 10 (4) ◽  
pp. 6 ◽  
Author(s):  
M. Vidyavathi ◽  
G. Srividya

Ciprofloxacin (CF) is one of the topmost selling antibiotics and it is available at a cheap cost which is used to treat many bacterial infections. Many research scientists are working on this drug for various applications on different drug delivery systems. The main objective of this paper is to enlighten about the details of pure drug CF and its delivery systems along with current research on this drug. This review focused on history, pharmacokinetics, mechanism of action, types of dosage form available in the market with their cost, current research going on this drug with their applications and methods development for estimation of CF. It also highlighted the possible interactions and adverse drug reactions of CF and patents available. The present review revealed that the only analytical method for estimation of CF was developed in the first decade, few drug delivery systems (DDS) of CF were developed in the second decade and more research work on the development of novel DDS of CF founded in the last decade.





2020 ◽  
Vol Volume 15 ◽  
pp. 2789-2808 ◽  
Author(s):  
Michael Fana ◽  
John Gallien ◽  
Bhairavi Srinageshwar ◽  
Gary L. Dunbar ◽  
Julien Rossignol


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Qiao ◽  
Yifan Rao ◽  
Keting Zhu ◽  
Xiancai Rao ◽  
Renjie Zhou

Bacterial membrane vesicles (MVs) are produced by both Gram-positive and Gram-negative bacteria during growth in vitro and in vivo. MVs are nanoscale vesicular structures with diameters ranging from 20 to 400 nm. MVs incorporate bacterial lipids, proteins, and often nucleic acids, and can effectively stimulate host immune response against bacterial infections. As vaccine candidates and drug delivery systems, MVs possess high biosafety owing to the lack of self-replication ability. However, wild-type bacterial strains have poor MV yield, and MVs from the wild-type strains may be harmful due to the carriage of toxic components, such as lipopolysaccharides, hemolysins, enzymes, etc. In this review, we summarize the genetic modification of vesicle-producing bacteria to reduce MV toxicity, enhance vesicle immunogenicity, and increase vesicle production. The engineered MVs exhibit broad applications in vaccine designs, vaccine delivery vesicles, and drug delivery systems.



2019 ◽  
Vol 181 ◽  
pp. 632-638 ◽  
Author(s):  
Iolanda Francolini ◽  
Luisa Giansanti ◽  
Antonella Piozzi ◽  
Barbara Altieri ◽  
Alessandro Mauceri ◽  
...  


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1052
Author(s):  
Reem Abou Assi ◽  
Ibrahim M. Abdulbaqi ◽  
Toh Seok Ming ◽  
Chan Siok Yee ◽  
Habibah A. Wahab ◽  
...  

Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.





2020 ◽  
Vol 26 (36) ◽  
pp. 4569-4579 ◽  
Author(s):  
Tejashree Waghule ◽  
Vamshi Krishna Rapalli ◽  
Srividya Gorantla ◽  
Ranendra Narayan Saha ◽  
Sunil Kumar Dubey ◽  
...  

Background: Skin diseases affect all the age groups of people and have an impact on patients’ physical, mental, and emotional status. Conventional topical preparation is limited with its efficacy due to low permeation, frequent application, and poor adherence to the therapy for prolong time. Objective: The objective of this review article is to address the emerging trends of nanotechnology derived lipidic carrier systems for an effective treatment for skin disorders. Methodology: Various research and review articles from reputed international journals were referred and compiled. Results and Discussion: opical drug delivery systems were found to be more effective than oral and parenteral drug delivery systems for treating skin diseases due to targeted localized applications with reduced side effects. Lipid-based nanoparticles have been found to have the potential in treating skin diseases due to the biocompatibility and the versatility of the lipids. Nanostructured lipid carriers (NLCs) have gained much attention in treating skin diseases due to improved stability of the drugs, enhanced skin permeation, retention, and better therapeutic efficacy. The review summarizes the NLCs characteristics and their application for topical delivery of various therapeutics in skin disorders. NLCs have shown great potential in effective drug delivery for the treatment of psoriasis, dermatitis, bacterial infections, and skin cancer. Its cosmetic application has opened a new area for skincare. Furthermore, safety and clinical status revealed its future commercial acceptability. Conclusion: NLCs have been found as effective lipid nanocarriers for the delivery of topical therapeutics.



Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1430
Author(s):  
Sajid Fazal ◽  
Ruda Lee

Numerous factors need to be considered to develop a nanodrug delivery system that is biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles obtained from mammalian cells, are being explored as a biomimetic drug delivery system that has superior biocompatibility and high translational capability. However, the economics of undertaking large-scale mammalian culture to derive exosomal vesicles for translation seems to be challenging and unfeasible. Recently, Bacterial Membrane Vesicles (BMVs) derived from bacteria are being explored as a viable alternative as biomimetic drug delivery systems that can be manufactured relatively easily at much lower costs at a large scale. Until now, BMVs have been investigated extensively as successful immunomodulating agents, but their capability as drug delivery systems remains to be explored in detail. In this review, the use of BMVs as suitable cargo delivery vehicles is discussed with focus on their use for in vivo treatment of cancer and bacterial infections reported thus far. Additionally, the different types of BMVs, factors affecting their synthesis and different cargo loading techniques used in BMVs are also discussed.



Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Xiao Ma ◽  
Yun Gao ◽  
Duoyi Zhao ◽  
Weilin Zhang ◽  
Wei Zhao ◽  
...  

Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems—such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease—sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field.



Sign in / Sign up

Export Citation Format

Share Document