scholarly journals Biomimetic Bacterial Membrane Vesicles for Drug Delivery Applications

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1430
Author(s):  
Sajid Fazal ◽  
Ruda Lee

Numerous factors need to be considered to develop a nanodrug delivery system that is biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles obtained from mammalian cells, are being explored as a biomimetic drug delivery system that has superior biocompatibility and high translational capability. However, the economics of undertaking large-scale mammalian culture to derive exosomal vesicles for translation seems to be challenging and unfeasible. Recently, Bacterial Membrane Vesicles (BMVs) derived from bacteria are being explored as a viable alternative as biomimetic drug delivery systems that can be manufactured relatively easily at much lower costs at a large scale. Until now, BMVs have been investigated extensively as successful immunomodulating agents, but their capability as drug delivery systems remains to be explored in detail. In this review, the use of BMVs as suitable cargo delivery vehicles is discussed with focus on their use for in vivo treatment of cancer and bacterial infections reported thus far. Additionally, the different types of BMVs, factors affecting their synthesis and different cargo loading techniques used in BMVs are also discussed.

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Qiao ◽  
Yifan Rao ◽  
Keting Zhu ◽  
Xiancai Rao ◽  
Renjie Zhou

Bacterial membrane vesicles (MVs) are produced by both Gram-positive and Gram-negative bacteria during growth in vitro and in vivo. MVs are nanoscale vesicular structures with diameters ranging from 20 to 400 nm. MVs incorporate bacterial lipids, proteins, and often nucleic acids, and can effectively stimulate host immune response against bacterial infections. As vaccine candidates and drug delivery systems, MVs possess high biosafety owing to the lack of self-replication ability. However, wild-type bacterial strains have poor MV yield, and MVs from the wild-type strains may be harmful due to the carriage of toxic components, such as lipopolysaccharides, hemolysins, enzymes, etc. In this review, we summarize the genetic modification of vesicle-producing bacteria to reduce MV toxicity, enhance vesicle immunogenicity, and increase vesicle production. The engineered MVs exhibit broad applications in vaccine designs, vaccine delivery vesicles, and drug delivery systems.


2020 ◽  
Vol 1 (2) ◽  
pp. 13-23
Author(s):  
Madhushreeta Manna ◽  
Arijit Shil

Introduction: Intracellular bacterial pathogens are hard to treat because of the inability of conventional antimicrobial agents belonging to widely used classes, like aminoglycosides and β-lactams, fluoroquinolones, or macrolides to penetrate, accumulate, or be retained in the mammalian cells. The increasing problem of antibiotic resistance complicates more the treatment of the diseases caused by these agents. Objectives: The purpose of this chapter is to present the limitations of each class of antibiotics in targeting intracellular pathogens and the main research directions for the development of drug delivery systems for the intracellular release of antibiotics. Methods: Different improved drug carriers have been developed for treating intracellular pathogens, including antibiotics loaded into liposomes, microspheres, polymeric carriers, and nanoplexes. Results: In many cases, the increase in therapeutic doses and treatment duration is accompanied by the occurrence of severe side effects. Taking into account the huge financial investment associated with bringing a new antibiotic to the market and the limited lifetime of antibiotics, the design of drug delivery systems to enable the targeting of antibiotics inside the cells, to improve their activity in different intracellular niches at different pH and oxygen concentrations, and to achieve a reduced dosage and frequency of administration could represent a prudent choice. An ideal drug delivery system should possess several properties, such as antimicrobial activity, biodegradability, and biocompatibility, making it suitable for use in biomedical and pharmaceutical formulations. Conclusions: This approach allow reviving old antibiotics rendered useless by resistance or toxicity, rescuing the last line therapy antibiotics by increasing the therapeutic index, widening the antimicrobial spectrum of antibiotics scaffolds that failed due to membrane permeability problems, and thus reducing the gap between increasingly drug-resistant pathogens and the development of new antibiotics.


Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


2018 ◽  
Vol 6 (9) ◽  
pp. 1312-1321 ◽  
Author(s):  
Chunhua Yang ◽  
Mingzhen Zhang ◽  
Didier Merlin

Plant-derived edible nanoparticles (PDNPs) are nano-sized membrane vesicles released by edible plants, such as grapefruit, ginger, broccoli, and lemon.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


Author(s):  
SARIPILLI RAJESWARI ◽  
VANAPALLI SWAPNA

Microsponges (MSPs) are at the forefront of the rapidly developing field of novel drug delivery systems which are gaining popularity due to their use for controlled release and targeted drug delivery. The microsponge delivery system (MDS) is a patented polymeric system consisting of porous microspheres typically 10-25 microns in diameter, loaded with an active agent. They are tiny sponge-like spherical particles that consist of a myriad of interconnecting voids within a non-collapsible structure with a large porous surface through which active ingredient is released in a controlled manner. Microsponge also hold a certification as one of the potential approaches for gastric retention where many oral dosage forms face several physiological restrictions due to non-uniform absorption pattern, inadequate medication release and shorter residence time in the stomach. This type of drug delivery system which is non-irritating, non-allergic, non-toxic, can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as gel, cream, liquid or powder that is why it is called as a “versatile drug delivery system”. It overcomes the drawbacks of other formulations such as frequency of dosing, drug reaction, incompatibility with environmental condition. These porous microspheres were exclusively designed for chronotherapeutic topical drug delivery but attempt to utilize them for oral, pulmonary and parenteral drug delivery were also made. The present review elaborates about the multifunctional microsponge technology including its preparation, characterization, evaluation methods along with recent research and future potential.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2020 ◽  
Vol 11 (2) ◽  
pp. 2505-2518
Author(s):  
Sindhuja Devaraj ◽  
Ganesh GNK

Nanoparticulate drug delivery system are the rapidly developing system, and nanoparticles are present in the size range of 1-100nm. Nanoparticles composed of various thermal, electrical, and optical property. Nanoparticles offers the potential advantages over the traditional dosage forms it is ascribable to the properties of nanoparticles. Nanoparticulate drug delivery system ensures the site-specific delivery of a drug(Targeting drug delivery) and aids in improving the efficacy of the new as well as old drugs and has the potential in crossing the various physiological barriers and also improves the therapeutic index of the drugs and increases the patient compliance. The objectives of this review is to classify the nanoparticles based on the different groups, surface properties of nanoparticles, describe the strategies of drug targeting, the necessity of nanoparticles their general method of preparation, different methods used in characterization, self- assembly and mechanism of drug release in a systemic manner. The potential advantages and limitations of various nanoparticulate drug delivery systems are also discussed elaborately.


Author(s):  
Amit Prakash ◽  
Amit Prakash

Oral drug delivery is the most commonly used and preferred route of delivery of pharmaceuticals which has been successfully treating wide number of diseases. The advantages of this method of delivery are patient friendly, cost effective, established delivery system, noninvasiveness and convenient, and In the pharmaceutical field it is the most favored drug delivery system. Oral drug delivery systems along with other effective delivery system types that are effective and promising are discussed in this paper based on the mechanism of drug release.


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


Sign in / Sign up

Export Citation Format

Share Document