Toward 21st Century Bridge Design through Collaborative Design Process

2010 ◽  
Vol 97 (17) ◽  
pp. 55-60
Author(s):  
Namhee K. Hong ◽  
Hyun-Moo Koh ◽  
Sung-Gul Hong
Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


2021 ◽  
Author(s):  
Jaroslav Navrátil ◽  
Petr Ševčík ◽  
Johann Stampler ◽  
Gregor Strekelj

<p>Using BIM technology for the design process in the construction industry has become somewhat of a standard approach. For bridge design, various solutions offering geometric design functionality and data management facilities are available on the market. However, integrated solutions for seamlessly supporting the whole planning process are still a scarce commodity. The solution presented integrates architectural modeling, structural analysis, and sophisticated proof checking functionality in one package, where, based on a 4D architectural model, an analysis model is automatically derived, allowing for simulating the erection process in detail and investigating all relevant stress states. The focus of the paper is the reinforcement design of prestressed concrete sections, which is one of the most challenging tasks among the various requirements arising in the design process.</p>


2018 ◽  
Vol 245 ◽  
pp. 02001 ◽  
Author(s):  
Evgenii Khrapunov ◽  
Sergei Solovev

The main ideas of the aerodynamic studies of large bridges are presented in present paper. Main types of aero-elastic instability for bridges with spans over 100 meters are considered. A two-step modeling approach is presented. At the first stage, the aerodynamic characteristics of the span fragment are considered, at the second.stage the characteristics of the whole bridge. Methods for investigation of bridge oscillations in a special-purpose experimental facility – the Landscape Wind Tunnel – are described. Examples of tests with elastic similar models of bridges are given, and measurements to mitigate dangerous oscillations early in the bridge design process are described.


Author(s):  
Meisha Rosenberg ◽  
Judy M. Vance

Successful collaborative design requires in-depth communication between experts from different disciplines. Many design decisions are made based on a shared mental model and understanding of key features and functions before the first prototype is built. Large-Scale Immersive Computing Environments (LSICEs) provide the opportunity for teams of experts to view and interact with 3D CAD models using natural human motions to explore potential design configurations. This paper presents the results of a class exercise where student design teams used an LSICE to examine their design ideas and make decisions during the design process. The goal of this research is to gain an understanding of (1) whether the decisions made by the students are improved by full-scale visualizations of their designs in LSICEs, (2) how the use of LSICEs affect the communication of students with collaborators and clients, and (3) how the interaction methods provided in LSICEs affect the design process. The results of this research indicate that the use of LSICEs improves communication among design team members.


Author(s):  
Hsien-Hui Tang ◽  
Yuying Y. Lee ◽  
Wenzhi Chen

AbstractReflective actions in collaborative design can potentially improve design performance and results. This paper quantitatively reexamines the relationships between reflective activities and design performance during the collaborative design process in terms of reflection in action. Twenty sets of protocol data were encoded by a modified version of Valkenburg and Dorst's coding scheme. Using statistical testing, the relationship between the design performance and the number of activities plus the transitions was examined. A significant statistical correlation was found between the percentage of mature framing (setting up of a desired goal with sufficient follow-ups) and the overall performance. These quantitative results verify the qualitative findings of the previous study.


Sign in / Sign up

Export Citation Format

Share Document