A physics-based distributed collaborative design process for military aerospace vehicle development and technology assessment

2014 ◽  
Vol 7 (3/4) ◽  
pp. 242 ◽  
Author(s):  
Raymond M. Kolonay
Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


Author(s):  
Meisha Rosenberg ◽  
Judy M. Vance

Successful collaborative design requires in-depth communication between experts from different disciplines. Many design decisions are made based on a shared mental model and understanding of key features and functions before the first prototype is built. Large-Scale Immersive Computing Environments (LSICEs) provide the opportunity for teams of experts to view and interact with 3D CAD models using natural human motions to explore potential design configurations. This paper presents the results of a class exercise where student design teams used an LSICE to examine their design ideas and make decisions during the design process. The goal of this research is to gain an understanding of (1) whether the decisions made by the students are improved by full-scale visualizations of their designs in LSICEs, (2) how the use of LSICEs affect the communication of students with collaborators and clients, and (3) how the interaction methods provided in LSICEs affect the design process. The results of this research indicate that the use of LSICEs improves communication among design team members.


Author(s):  
Hsien-Hui Tang ◽  
Yuying Y. Lee ◽  
Wenzhi Chen

AbstractReflective actions in collaborative design can potentially improve design performance and results. This paper quantitatively reexamines the relationships between reflective activities and design performance during the collaborative design process in terms of reflection in action. Twenty sets of protocol data were encoded by a modified version of Valkenburg and Dorst's coding scheme. Using statistical testing, the relationship between the design performance and the number of activities plus the transitions was examined. A significant statistical correlation was found between the percentage of mature framing (setting up of a desired goal with sufficient follow-ups) and the overall performance. These quantitative results verify the qualitative findings of the previous study.


Author(s):  
Ralf Stetter ◽  
David G. Ullman

Abstract This paper presents an approach for identifying team-roles. The proposed approach is based on the interpretation of a design process in terms of the behavior of the members of the team. Behavior is codified in terms of the team member’s process and physical activities. In this study a collaborative design process was recorded on video-tape and analyzed in detail. The process was decomposed into distinct sections called events. In every event each team member was assigned a team-role taking into consideration the activity of the team member, i.e. what the team member does, how activity of the team member, i.e. what the team member does, how the team member does it, and the context of the event. A graphical representation of the results called ‘role-profile’ was developed making it possible to clearly identify a basic team-role for every subject in the observed design process.


2019 ◽  
Vol 35 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Erik Christian Stanek ◽  
Sarah Taylor Lovell

AbstractSince 1985, land retirement has been the primary approach used by the federal government for environmental protection of agricultural landscapes, but increasingly it is being supplemented by conservation initiatives on working lands. This shift logically supports agroforestry and other multifunctional approaches as a means to combine production and conservation. However, such approaches can be complex and difficult to design, contributing to the limited adoption in the USA. To understand and improve the integration of multifunctional landscapes into conservation programs, we worked with 15 landowners in a collaborative design process to build unique conservation plans utilizing agroforestry. We interviewed participants before and after the design process to examine the utility of a personalized design process, applicability of agroforestry to conservation programs and pathways to improve conservation policy. We found that landowners strongly preferred working in person for the design process, and being presented a comparison of alternative designs, rather than a single option, especially for novel systems. Agroforestry was seen as a viable method of generating conservation benefits while providing value to the landowners, each of whom stated they were more inclined to adopt such practices irrespective of financial assistance to do so. For conservation programs, landowners suggested reducing their complexity, inflexibility and impersonal nature to improve the integration of multifunctional practices that appeal directly to the practitioner's needs and preferences. These findings are valuable for conservation policy because they complement previous research theory suggesting the value of working collaboratively with landowners in the design of multifunctional landscapes. Personalized solutions that are developed based on the unique characteristics of the local landscape and the preferences of the individual landowner may be retained beyond a specified payment period, rather than being converted back into annual crop production.


Author(s):  
Aybüke Aurum ◽  
Oya Demirbilek

As we enter the third millennium, many organizations are forced to constantly pursue new strategies to differentiate themselves from their competitors. Examples include offering customers streams of new products and services, as well as continuously seeking to improve productivity, services and the effectiveness of product design, development and manufacturing processes. Consequently, new concepts, approaches and tools are emerging quickly as the globalization trend expands across the world. Product complexity, pressures to reduce production cycle time, the need for stakeholders’ contributions and multinational company as well as consumer requirements create the demand for sophisticated multi-designer collaborative virtual environments where product design can be shared and acted upon (Kunz, Christiansen, Cohen, Jin, & Levitt, 1998; Ragusa & Bochanek, 2001; Anderson, Esser & Interrante, 2003). Thus, researchers and practitioners recognize that collaboration is an essential aspect of contemporary, professional product design and development activities. The design process is collaborative by nature. Collaborative design fosters participation of stakeholders in any form during the design process. The design of a successful product is dependent on integrating information and experiences from a number of different knowledge domains. These domains include consumer (end-user) requirements, industrial designers’ professional design skills as well as manufacturers’ needs. This results in a product that performs at a functional as well as aesthetic level and that can be manufactured by the right process at the right price. End-user involvement is essential to product design, since products that do not achieve consumer satisfaction or meet consumer needs are doomed to fail (Schultz, 2001). Accurate understanding of user needs is an essential aspect in developing commercially successful products (Achilladelis, 1971). Hence, it is very important for industrial designers to gather the end-users’ needs and incorporate them into their designs. The involvement of manufacturers in the initial stages of the domestic product design process can lead to a dramatic reduction in a product’s development lifecycle time, also facilitating the coordination of the purchasing and engineering functions (Bochanek & Ragusa, 2001; Demirbilek, 2001). The increasing complexity of artifacts and the globalization of product development are changing research methodologies and techniques. A prime example of this includes the application of a virtual collaborative design environment (VCDE) for product design and manufacturing. This article focuses on the concept of virtual collaborative design. It describes a research effort to investigate cross-cultural collaboration in product development using online applications for domestic product design. The aim of this research is to investigate issues related to the virtual collaborative design (VCD) process, and to bring an understanding of stakeholder needs during the collaborative design process as well as to improve the relationships between end-users, designers and manufacturers. The article presents findings based on a survey study conducted with four different potential stakeholders: representatives of consumers, software designers, industrial designers and manufacturers.


Sign in / Sign up

Export Citation Format

Share Document