Case studies considering the influence of the time-dependent behaviour of concrete on the serviceability limit state design of composite steel-concrete buildings

2021 ◽  
pp. 137-156
Author(s):  
Alejandro Pérez Caldentey ◽  
John Hewitt ◽  
John van Rooyen ◽  
Graziano Leoni ◽  
Gianluca Ranzi ◽  
...  

<p>This chapter presents a number of case studies that deal with the service design of composite steel-concrete buildings associated with the time-dependent behaviour of the concrete. The particular focus of this chapter is to outline key design aspects that need to be accounted for in design and that are influenced by concrete time effects. The first case study provides an overview of the design considerations related to the time-dependent column shortening in typical multi-storey buildings by considering the layout of the Intesa Sanpaolo Headquarters in Turin as reference. The second case study focuses on a composite floor of a commercial building constructed in Australia and it provides an overview of the conceptual design used to select the steel beam framing arrangement to support the composite floor system while accounting for concrete cracking and time effects. The third case study deals with the Quay Quarter Tower that has been designed for the repurposing of an existing 50-year old building in Australia while accounting for the time-dependent interaction between the existing and the new concrete components of the building.</p>

2021 ◽  
pp. 157-188
Author(s):  
Alejandro Pérez Caldentey ◽  
Luigino Dezi ◽  
Javier Jordán ◽  
Graziano Leoni ◽  
Gianluca Ranzi ◽  
...  

<p>This chapter introduces three case studies that describe how aspects related to the serviceability limit state design associated with the time-dependent behaviour of concrete can be considered in a design situation. The first case study considers the Oxec II Bridge in Guatemala. It provides an overview of the stress verification of the steel section of the composite bridge and accounts for concrete time effects to capture the stress redistribution that occurs between the concrete and the steel components. The second case study deals with the Yalquincha Viaduct in Chile and provides an overview of the type of long-term analyses that can be carried out when considering the influence of different cross-sectional arrangements on the time-dependent response of the bridge. The last case study focusses on the Serra Cazzola Viaduct in Italy and highlights the opportunities available to designers in exploiting optimised casting sequences to reduce the time-dependent stresses induced in the concrete and, therefore, mitigate the likelihood of concrete cracking.</p>


2021 ◽  
pp. 41-59
Author(s):  
Gianluca Ranzi ◽  
Raymond Ian Gilbert

<p>This chapter presents a state-of-the-art review of work published to date on the time-dependent response of composite steel-concrete slabs. The key components of this form of construction are introduced in the first part of the chapter, followed by a review of the time-dependent behaviour of the concrete and how it affects the in-service response of composite slabs. Throughout the chapter, particular attention is given to recent experimental and modelling work related to concrete time effects, and how these affect the in-service response of composite slabs, including the development of non-uniform shrinkage gradients that have been recently shown to occur in composite floors due to the inability of the concrete to dry from its underside because of the presence of the profiled steel sheeting.</p>


2021 ◽  
pp. 61-82
Author(s):  
Gianluca Ranzi ◽  
Graziano Leoni ◽  
Raymond Ian Gilbert ◽  
Luigino Dezi ◽  
Riccardo Zandonini

<p>This chapter provides an overview of the work carried out to date on the long-term behaviour of composite steel-concrete beams. In the first part of the chapter, a description of the components forming a composite member is presented. This is followed by an outline of the main kinematic concepts, such as full and partial shear interaction, that influence the structural response of this form of construction due to the flexibility of the shear connection provided between the concrete and steel components. The review of the work performed on the time-dependent behaviour of concrete and its influence on the long-term structural response of composite beams for building and bridge applications is then presented. The modelling and experimental work considered in the review highlights the importance of considering concrete time effects, when predicting the in-service response of composite beams.</p>


1978 ◽  
Vol 15 (3) ◽  
pp. 402-423 ◽  
Author(s):  
F. Tavenas ◽  
S. Leroueil ◽  
P. La Rochelle ◽  
M. Roy

To fill an important gap in the knowledge of creep phenomena, the creep behaviour of the intact, overconsolidated Saint-Alban clay has been investigated by means of drained and undrained triaxial tests as well as of odometer tests.Creep deformations can be broken into volumetric and shear components. The development with time of both volumetric and shear strains can be represented by means of the phenomenological equation proposed by Singh and Mitchell in 1968. However, the stress function in that equation must be defined separately for each strain component and by reference to the limit state of the clay.A general model of the time dependent behaviour of clays might be obtained by combining the concepts of limit state and isotaches, as implied in the YLIGHT model proposed by Tavenas and Leroueil in 1977 but the effect of overconsolidation on the shape of the isotaches requires further investigation.


2018 ◽  
Vol 7 (3) ◽  
pp. 1826
Author(s):  
Heyam H. Shaalan ◽  
Mohd Ashraf Mohamad Ismail ◽  
Romziah Azit

Shotcrete is ordinary concrete applied to the surface under high pressure. It demonstrates a highly time-dependent behaviour after few hours of application. Traditional approaches assume a simple linear elastic behaviour using a hypothetical young modulus to investigate the time-dependency and creep effects. In this paper, a new constitutive model of shotcrete is applied to evaluate the time-dependent behaviour of a TBM tunnel lining and investigate the parameters that can influence this behaviour. The Shotcrete model is based on the framework of Elasto-plasticity and designed to model shotcrete linings more realistically. The basic data of Pahang-Selangor Raw Water Transfer Project is used for the analysis study. An attempt is made to investigate the influence of some input parameters of the shotcrete model on the time-dependent behaviour of the shotcrete lining. These parameters include the time-dependent stiffness/strength parameters, creep and shrinkage parameters and steel fibre parameters. The variation in shotcrete strength classes causes a noticeable influence on the development of shotcrete compressive strength with time, particularly during the first days of application. The creep and shrinkage strain cause a considerable reduction in the development of the shotcrete stress with time. The impact of steel fibre content is determined, and the result indicated that the development of plain shotcrete stresses with time is lower than that of the reinforced shotcrete. In addition, a comparison study is performed to analyse the tunnel lining behaviour using both shotcrete model and an elastic analysis. Significant differences in shotcrete lining stresses are achieved when using the elastic analysis while the shotcrete model results in a reasonable result that can be used for the design requirements. 


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Rajeswara R. Resapu ◽  
Roger D. Bradshaw

Abstract In-vitro mechanical indentation experimentation is performed on bulk liver tissue of lamb to characterize its nonlinear material behaviour. The material response is characterized by a visco-hyperelastic material model by the use of 2-dimensional inverse finite element (FE) analysis. The time-dependent behaviour is characterized by the viscoelastic model represented by a 4-parameter Prony series, whereas the large deformations are modelled using the hyperelastic Neo-Hookean model. The shear response described by the initial and final shear moduli and the corresponding Prony series parameters are optimized using ANSYS with the Root Mean Square (RMS) error being the objective function. Optimized material properties are validated using experimental results obtained under different loading histories. To study the efficacy of a 2D model, a three dimensional (3D) model of the specimen is developed using Micro-CT of the specimen. The initial elastic modulus of the lamb liver obtained was found to 13.5 kPa for 5% indentation depth at a loading rate of 1 mm/sec for 1-cycle. These properties are able to predict the response at 8.33% depth and a loading rate of 5 mm/sec at multiple cycles with reasonable accuracy. Article highlights The visco-hyperelastic model accurately models the large displacement as well as the time-dependent behaviour of the bulk liver tissue. Mapped meshing of the 3D FE model saves computational time and captures localized displacement in an accurate manner. The 2D axisymmetric model while predicting the force response of the bulk tissue, cannot predict the localized deformations.


Sign in / Sign up

Export Citation Format

Share Document