Influence of Curvature Radius on Static and Dynamic Characteristics of Curved Cable- stayed bridge

Author(s):  
ErHua Zhang ◽  
Deshan Shan ◽  
Shan Guo ◽  
JianXin Ren ◽  
Qi Li
1988 ◽  
Vol 110 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Makoto Mikami ◽  
Mikio Kumagai ◽  
Shuetsu Uno ◽  
Hiromu Hashimoto

Static and dynamic characteristics of load-on-type rolling-pad journal bearings with six pads have been studied theoretically and experimentally by considering the effects of both turbulence and viscous heat generation in the oil film. By concurrently solving a turbulent lubrication equation and an adiabatic energy equation, pressure and temperature distributions, load capacity, and friction force are obtained. Moreover, the linearlized spring and damping coefficients of oil film are calculated under the assumption of small displacements of the journal center. It is found that the load capacity and the friction force considerably increase due to turbulence, and the effects of heat generated under turbulent conditions are more pronounced than those under laminar conditions. Also clarified are that bearing characteristics are improved by preloading the lower-side two pads located before and after the lowest pad, and that the curvature radius of the pad insignificantly affects the characteristics. The experimental results on static characteristics agree well with the theoretical results.


1998 ◽  
Vol 08 (PR3) ◽  
pp. Pr3-81-Pr3-86
Author(s):  
F. Aniel ◽  
N. Zerounian ◽  
A. Gruhle ◽  
C. Mähner ◽  
G. Vernet ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 2055-2059 ◽  
Author(s):  
Yu Lin Wang ◽  
Na Jin ◽  
Kai Liao ◽  
Rui Jin Guo ◽  
Hu Tian Feng

The head frame is a key component which plays a supportive and accommodative role in the spindle system of CNC machine tool. Improving the static and dynamic characteristics has profound significance to the development of machine tool and product performance. The simplified finite element modal is established with ANSYS to carry out the static and modal analysis. The results showed that the maximum deformation of the head frame was 0.0066mm, the maximum stress was 3.94Mpa, the deformation of most region was no more than 0.0007mm, which all verified that the head frame had a good stiffness and deforming resistance; several improvement measures for dynamic performance were also proposed by analyzing the mode shapes, and the 1st order natural frequency increased 7.33% while the head frame mass only increased 1.58% applying the optimal measure, which improved the dynamic characteristics of the head frame effectively.


Sign in / Sign up

Export Citation Format

Share Document