scholarly journals Land Cover Change Detected by Satellite Data in the Agricultural Development Area of the Sanjiang Plain, China

2007 ◽  
Vol 26 ◽  
pp. 197-202 ◽  
Author(s):  
Mizue Murooka ◽  
Shigeko Haruyama ◽  
Yoshitaka Masuda
2021 ◽  
pp. 694-708
Author(s):  
Melisa Ljuša ◽  
Hamid Čustović ◽  
Jasmin Taletović ◽  
Mirza Ponjavić ◽  
Almir Karabegović

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhaoqing Luan ◽  
Demin Zhou

A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.


Changes in land cover are inevitable phenomena that occur in all parts of the world. Land cover changes can occur due to natural phenomena that include runoff, soil erosion and sedimentation besides man-made phenomena that include deforestation, urbanization and conversion of land covers to suit human needs. Several works on change detection have been carried out elsewhere, however there were lack of effort in analyzing the issues that affect the performance of existing change detection techniques. The study presented in this paper aims to detect changes of land covers by using remote sensing satellite data. The study involves detection of land cover changes using remote sensing techniques. This makes use satellite data taken at different times over a particular area of interest. The data has resolution of 30 m and records surface reflectance at approximately 0.4 to 0.7 micrometers wavelengths. The study area is located in Selangor, Malaysia and occupied with tropical land covers including coastal swamp water, sediment plumes, urban, industry, water, bare land, cleared land, oil palm, rubber and coconut. Initially, region of interests (ROI) were drawn on each of the land covers in order to extract the training pixels. Landsat satellite bands 1, 2, 3, 4, 5 and 7 were then used as the input for the three supervised classification methods namely Support Vector Machine (SVM), Maximum Likelihood (ML) and Neural Network (NN). Different sizes of training pixels were used as the input for the classification methods so that the performance can be better understood. The accuracy of the classifications was then assessed by analyzing the classifications with a set of reference pixels using a confusion matrix. The classification methods were then used to identify the conversion of land cover from year 2000 to 2005 within the study area. The outcomes of the land cover change detection were reported in terms quantitative and qualitative analyses. The study shows that SVM gives a more accurate and realistic land cover change detection compared to ML and NN mainly due to not being much influenced by the size of the training pixels. The findings of the study serve as important input for decision makers in managing natural resources and environment in the tropics systematically and efficiently.


Land ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Zahn Münch ◽  
Lesley Gibson ◽  
Anthony Palmer

This paper explores the relationship between land cover change and albedo, recognized as a regulating ecosystems service. Trends and relationships between land cover change and surface albedo were quantified to characterise catchment water and carbon fluxes, through respectively evapotranspiration (ET) and net primary production (NPP). Moderate resolution imaging spectroradiometer (MODIS) and Landsat satellite data were used to describe trends at catchment and land cover change trajectory level. Peak season albedo was computed to reduce seasonal effects. Different trends were found depending on catchment land management practices, and satellite data used. Although not statistically significant, albedo, NPP, ET and normalised difference vegetation index (NDVI) were all correlated with rainfall. In both catchments, NPP, ET and NDVI showed a weak negative trend, while albedo showed a weak positive trend. Modelled land cover change was used to calculate future carbon storage and water use, with a decrease in catchment carbon storage and water use computed. Grassland, a dominant dormant land cover class, was targeted for land cover change by woody encroachment and afforestation, causing a decrease in albedo, while urbanisation and cultivation caused an increase in albedo. Land cover map error of fragmented transition classes and the mixed pixel effect, affected results, suggesting use of higher-resolution imagery for NPP and ET and albedo as a proxy for land cover.


Eos ◽  
2007 ◽  
Vol 88 (26) ◽  
pp. 269-274 ◽  
Author(s):  
Christopher Potter ◽  
Vanessa Genovese ◽  
Peggy Gross ◽  
Shyam Boriah ◽  
Michael Steinbach ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 4011 ◽  
Author(s):  
Chunxia Yang ◽  
Hua Zheng ◽  
Binbin Huang ◽  
Ruonan Li ◽  
Zhiyun Ouyang ◽  
...  

Nitrogen (N) budgets have been computed in many countries at various scales to improve understanding of N-balance characteristics and to assess the environmental pollution risks of applying chemical fertilizer N. However, dynamic characteristics, driving forces, and potential soil fertility consequences related to cropland N balance have seldom been discussed, especially in regions with highly fertile soils and low N-use intensities. This study investigated the temporal and spatial characteristics of N balance, and the impact of agricultural development on the agro-ecosystems of the Sanjiang Plain, one of the largest producers of commodity food grains in China. County-level agricultural statistics at five-year intervals were used to calculate agricultural N balances, N surplus intensity, and N-use efficiency between 2005 and 2015. Agricultural development has brought about continual increases in cultivated land area, consumption of chemical fertilizers, and nitrogen use efficiency (NUE). Nitrogen surplus intensity decreased from 65.0 kg/ha in 2005 to 43.5 kg/ha in 2010, and to 22.2 kg/ha in 2015. However, NUE was >90% in 13 counties in 2015, and in 11 counties in 2010. In contrast, only 5 counties had NUE above 90% in 2005, which indicates that N from the soil was used by crops and soil fertility was gradually decreasing. The percentage change of crop area, namely, the increase in maize area percentage, contributed significantly to the increases in NUE. A judicious management of fertilizers that meets the nutrient needs of the crops and ensures agricultural sustainability on the Sanjiang Plain is therefore essential. The findings of this study emphasize the importance of assessing the impact of crop structure adjustment on soil fertility and nitrogen balance during agricultural development.


Sign in / Sign up

Export Citation Format

Share Document