scholarly journals Testing of inhibition activity of essential oils against Paenibacillus larvae – the causative agent of American foulbrood

2014 ◽  
Vol 83 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Katarína Kuzyšinová ◽  
Dagmar Mudroňová ◽  
Juraj Toporčák ◽  
Radomíra Nemcová ◽  
Ladislav Molnár ◽  
...  

American foulbrood is a dangerous world-wide spread disease of honey bees caused by the Paenibacillus larvae bacterium. Antibiotic treatments are less effective and leave residues in bee products. It is therefore necessary to find an alternative, especially using natural ingredients such as plant essential oils, probiotics, fatty or organic acids. Two strains of P. larvae were used for this study: CCM 4488, a strain from the Czech collection of micro-organisms and a Slovak field strain which was isolated from infected bee combs and characterized on the basis of biochemical properties. Plant essential oils of sage (Salvia officinalis), anise (Pimpinella anisum), oregano (Origanum vulgare), caraway (Carum carvi), thyme (Thymus vulgaris), rosemary (Rosmarinum officinalis), clove (Syzygium aromaticum), camomile (Chamomilla recutita) and fennel (Foeniculum vulgare) were used for the testing of the inhibitory activity against P. larvae. Essential oils at amounts of 5 µl and 10 µl were applied to sterile discs on MYPGP agar; inhibition zone diameters were measured after 24-h incubation at 37 °C. The strongest inhibitory activity against both P. larvae strains was noted in case of the essential oils from oregano, thyme and clove; essential oils from camomile, rosemary and fennel showed no or weak antibacterial activity. Medium strong inhibition activity was recorded in case of previously untested essential oil from Carum carvi. There was a difference in sensitivity of both tested strains to essential oils. Our study confirmed that some essential oils can be used in the prevention of American foulbrood but further experiments aimed at their influence on physiological intestinal microflora of honey bees must be performed.

2015 ◽  
Vol 30 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Mohammad Javed Ansari ◽  
Ahmad Al-Ghamdi ◽  
Salma Usmani ◽  
Noori Al-Waili ◽  
Adgaba Nuru ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 511-521 ◽  
Author(s):  
Soňa Felšöciová ◽  
Nenad Vukovic ◽  
Paweł Jeżowski ◽  
Miroslava Kačániová

AbstractPhytopathogenic fungi have been responsible for considerable economic losses in vineyards, and therefore, more attention should be paid to the development and implementation of preventative treatment that is environmentally friendly. The aim of this study was to evaluate the antifungal activity of ten essential oils (EOs) (viz. Lavandula angustifolia Mill., Carum carvi L., Pinus mugo var. pumilio, Mentha piperita L., Foeniculum vulgare L., Pinus sylvestris L., Satureja hortensis L., Origanum vulgare L., Pimpinella anisum L. and Rosmarinus officinalis L.). For the antifungal activity evaluation against Penicillium brevicompactum, P. citrinum, P. crustosum, P. expansum, P. funiculosum, P. glabrum, P. chrysogenum, P. oxalicum, P. polonicum and Talaromyces purpurogenus a disc diffusion method was used. The ten EOs exhibited different antifungal properties. Three tested EOs (Carum carvi L., Satureja hortensis L. and Pimpinella anisum L.) at concentrations of 0.75, 0.50, 0.25 and 0.125 µL/mL showed antifungal activity, inhibiting the mycelial growth. The Origanum vulgare L. EOs exhibited a lower level of inhibition. Overall, Lavandula angustifolia Mill., Pinus mugo var. pumilio, Mentha piperita L., Foeniculum vulgare L., Pinus sylvestris L., Satureja hortensis L., Pimpinella anisum L. and Rosmarinus officinalis L. were effective as fungicidal agents but their efficiency varied between the strains of fungi. Carum carvi L. showed strong antifungal activity against all tested strains at both full strength and reduced concentrations. These EOs could be considered as potential sources of antifungal compounds for treating plant fungal diseases.


2014 ◽  
Vol 10 (7) ◽  
pp. e1004284 ◽  
Author(s):  
Eva Garcia-Gonzalez ◽  
Lena Poppinga ◽  
Anne Fünfhaus ◽  
Gillian Hertlein ◽  
Kati Hedtke ◽  
...  

Apidologie ◽  
2017 ◽  
Vol 48 (3) ◽  
pp. 387-400 ◽  
Author(s):  
Rosa Maria Alonso-Salces ◽  
Noelia Melina Cugnata ◽  
Elisa Guaspari ◽  
Maria Celeste Pellegrini ◽  
Inés Aubone ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6736 ◽  
Author(s):  
Miroslava Kačániová ◽  
Margarita Terentjeva ◽  
Jana Žiarovská ◽  
Przemysław Łukasz Kowalczewski

The aim of study was to isolate and identify the gut bacteria of Apis mellifera and to evaluate antagonistic effect of the bacteriota against Paenibacillus larvae, which causes American foulbrood (AFB) in honeybees. The dilution plating method was used for the quantification of selected microbial groups from digestive tract of bees, with an emphasis on the bacteriota of the bees’ intestines. Bacteria were identified using mass spectrometry (MALDI-TOF-MS Biotyper). Overall, five classes, 27 genera and 66 species of bacteria were identified. Genera Lactobacillus (10 species) and Bacillus (8 species) were the most abundant. Gram-negative bacteria were represented with 16 genera, whereas Gram-positive with 10 genera. Delftia acidovorans and Escherichia coli were the most abundant in the digestive tract of honey bee. Resistance to a selection of antimicrobials was assessed for the bacterial isolates from bee gut and confirmed against all antimicrobials included in the study, with the exception of cefepime. Lactobacillus spp., especially L. kunkeei, L. crispatus and L. acidophilus. showed the strongest antimicrobial activity against P. larvae, the causal pathogen of AFB. Antimicrobial activity of essential oils against isolated bacteria and two isolates of P. larvae were assessed. Application of a broad selection of plant essential oils indicated that Thymus vulgaris had the highest antimicrobial activity against P. larvae.


2019 ◽  
Vol 43 (25) ◽  
pp. 10109-10117 ◽  
Author(s):  
Diego Rodríguez-Hernández ◽  
Weilan G. P. Melo ◽  
Carla Menegatti ◽  
Vitor B. Lourenzon ◽  
Fábio S. do Nascimento ◽  
...  

Strong activity against the bacteria Paenibacillus larvae ATCC9545, the causative agent of the American Foulbrood disease of honey bees.


Sign in / Sign up

Export Citation Format

Share Document