scholarly journals Predictive analysis of novel coronavirus using machine learning model - a graph mining approach

Author(s):  
Akshata Kulkarni

Abstract: Officials around the world are using several COVID-19 outbreak prediction models to make educated decisions and enact necessary control measures. In this study, we developed a Machine Learning model which predicts and forecasts the COVID-19 outbreak in India, with the goal of determining the best regression model for an in-depth examination of the novel coronavirus. Based on data available from January 31 to October 31, 2020, collected from Kaggle, this model predicts the number of confirmed cases in Maharashtra. We're using a Machine Learning model to foresee the future trend of these situations. The project has the potential to demonstrate the importance of information dissemination in improving response time and planning ahead of time to help reduce risk.


2021 ◽  
Author(s):  
Qiao Yang ◽  
Jixi Li ◽  
Zhijia Zhang ◽  
Xiaocheng Wu ◽  
Tongquan Liao ◽  
...  

Abstract BackgroundThe novel coronavirus disease 2019 (COVID-19) spreads rapidly among people and causes a global pandemic. It is of great clinical significance to identify COVID-19 patients with high risk of death.ResultsOf the 2,169 COVID-19 patients, the median age was 61 years and male patients accounted for 48%. A total of 646 patients were diagnosed with severe illness, and 75 patients died. Obvious differences in demographics, clinical characteristics and laboratory examinations were found between survivors and non-survivors. A decision tree classifier, including three biomarkers, neutrophil-to-lymphocyte ratio, C-reactive protein and lactic dehydrogenase, was developed to predict death outcome in severe patients. This model performed well both in train dataset and test dataset. The accuracy of this model was 0.98 and 0.98, respectively.ConclusionThe machine learning model was robust and effective in predicting the death outcome in severe COVID-19 patients.


Author(s):  
Omar Chamorro-Atalaya ◽  
Carlos Chávez-Herrera ◽  
Marco Anton-De los Santos ◽  
Juan Anton-De los Santos ◽  
Almintor Torres-Quiroz ◽  
...  

2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document