scholarly journals A Game Theory Approach for Conjunctive Use Optimization Model Based on Virtual Water Concept

2018 ◽  
Vol 4 (6) ◽  
pp. 1315 ◽  
Author(s):  
Abbas Sedghamiz ◽  
Manouchehr Heidarpour ◽  
Mohammad Reza Nikoo ◽  
Saeed Eslamian

In this study to allocate the agricultural and environmental water, considering virtual water concept, a multi-objective optimization model based on NSGA-II is developed. The objectives consist of equity maximization, agricultural benefit maximization for each region, maximization of green water utilization and finally minimization of environmental shortage. Then a cooperative game (Grand Coalition) model is presented by forming all possible coalitions. By the game model including Nucleolus, Proportional Nucleolus, Normal Nucleolus and Shapley methods, the benefit is reallocated based on all Pareto optimal solutions obtained from multi-objective optimization model. Then using two famous fallback bargaining methods, Unanimity and q-Approval, preferable alternative (solution) for each of the cooperative games is determined. Finally, based on the obtained benefit for each selected alternatives, the two most beneficial alternatives are chosen. The proposed methodology applied for water allocation of Minoo-Dasht, Azad-Shahr and Gonbad-Kavoos cities in Golestan province, Iran for a 3-year period as a case study. Also, eight crops including Wheat, Alfalfa, Barley, Bean, Rice, Corn, Soya, and Cotton are selected based on local experts’ recommendations. The models’ results indicated no significant difference between the grand coalition model and the multi-objective optimization model in terms of the average cultivation area (a relative change of 2.1%), while lower agricultural water allocation occurred for the grand coalition model (about 10.35 percent average) compared with the multi-objective optimization model. It is also observed that more agricultural benefit gained by the grand coalition model (32 percent average). Finally, it is found that Wheat and Corn hold the most rates of import and export, respectively, and Rice was the crop which has the least shortage of production to supply food demand.

2014 ◽  
Vol 525 ◽  
pp. 495-498 ◽  
Author(s):  
Yan Li ◽  
Jian Ping Jiang ◽  
Jie Du ◽  
Lin Mei Cai

Use the established multi-objective optimization model to optimize the benchmark building scheme. By comparing the analysis of the benchmark buildings efficient optimization, the established multi-objective optimization model in this paper has higher accuracy and stability, and can be used to guide the scheme design of engineering designer.


2021 ◽  
Vol 11 (18) ◽  
pp. 8375
Author(s):  
Min Yuan ◽  
Yu Li ◽  
Wenqiang Xu ◽  
Wei Cui

Based on actual lubricating oil production data and the base oil performance indexes of an enterprise, two nonlinear blending schemes corresponding to viscosity and freezing point and four linear blending schemes corresponding to acid value, flash point, oxidation stability, and carbon residue are given in this paper. On the premise that the error of each index is less than 5%, a linear weighted multi-objective optimization model based on integer nonlinear programming considering cost and performance is established, and the lubricating oil blending scheme is obtained. The results show that the blending formula is simple in form and convenient in calculation, and that the overall consistency between the calculated value and the measured value is good. At the same time, the relative error of each performance index, except residual carbon, of the scheme with weight value of (0.5, 0.5) is far less than 5%. Although the performance index is slightly inferior to that of the scheme with a weight value of (0, 1), it is far higher than that of the scheme with a weight value of (1, 0). The linear weighted multi-objective optimization model based on integer nonlinear programming proposed in this paper can well-optimize the blending scheme of industrial lubricating oil, and can re-select different weight combinations according to the actual situation, providing good prospects for application.


2017 ◽  
Vol 32 (2) ◽  
pp. 465-480 ◽  
Author(s):  
Abdelouahid Fouial ◽  
Irene Fernández García ◽  
Cristiana Bragalli ◽  
Nicola Lamaddalena ◽  
Juan Antonio Rodríguez Diaz

2019 ◽  
Vol 27 (2) ◽  
pp. 126-143
Author(s):  
Yongfeng Li ◽  
Liping Zhu

Affective responses reflect consumers’ affective needs and have attracted considerable attention in industrial product form design. When designing a product for consumers, designers should take into account multiple affective responses. Therefore, designing products that can satisfy multiple affective responses is a multi-objective optimization problem. In this article, a novel model based on the robust posterior preference articulation approach is proposed to optimize product form design by simultaneously considering multiple affective responses. First, design analysis is performed to determine design variables and affective responses. Subsequently, the Taguchi method is used, and the signal-to-noise ratios are calculated. Based on the results, predictive models for signal-to-noise ratios concerning multiple affective responses are built and then a multi-objective optimization model is constructed. The reference-point-based many-objective non-dominated sorting genetic algorithm–II (called NSGA-III) is used to solve the multi-objective optimization model for obtaining Pareto solutions. Finally, a combination of the fuzzy Kano model and the fuzzy optimum selection model is adopted to select the optimal solution from the obtained Pareto solutions. A car profile design was employed to present the proposed approach. The results reveal that the proposed approach can effectively achieve an optimal design and is a robust approach for optimizing product form design.


Sign in / Sign up

Export Citation Format

Share Document