scholarly journals Exact Three-Dimensional Stability Analysis of Plate Using an Direct Variational Energy Method

2022 ◽  
Vol 8 (1) ◽  
pp. 60-80
Author(s):  
F. C. Onyeka ◽  
B. O. Mama ◽  
T. E. Okeke

In this paper, direct variational calculus was put into practical use to analyses the three dimensional (3D) stability of rectangular thick plate which was simply supported at all the four edges (SSSS) under uniformly distributed compressive load. In the analysis, both trigonometric and polynomial displacement functions were used. This was done by formulating the equation of total potential energy for a thick plate using the 3D constitutive relations, from then on, the equation of compatibility was obtained to determine the relationship between the rotations and deflection. In the same way, governing equation was obtained through minimization of the total potential energy functional with respect to deflection. The solution of the governing equation is the function for deflection. Functions for rotations were obtained from deflection function using the solution of compatibility equations. These functions, deflection and rotations were substituted back into the energy functional, from where, through minimizations with respect to displacement coefficients, formulas for analysis were obtained. In the result, the critical buckling loads from the present study are higher than those of refined plate theories with 7.70%, signifying the coarseness of the refined plate theories. This amount of difference cannot be overlooked. However, it is shown that, all the recorded average percentage differences between trigonometric and polynomial approaches used in this work and those of 3D exact elasticity theory is lower than 1.0%, confirming the exactness of the present theory. Thus, the exact 3D plate theory obtained, provides a good solution for the stability analysis of plate and, can be recommended for analysis of any type of rectangular plates under the same loading and boundary condition. Doi: 10.28991/CEJ-2022-08-01-05 Full Text: PDF

2021 ◽  
Vol 5 (6) ◽  
pp. 916-928
Author(s):  
F. C. Onyeka ◽  
B. O. Mama

In this paper, an analytical three-dimensional (3D) bending characteristic of an isotropic rectangular thick plate with all edges simply supported (SSSS) and carrying uniformly distributed transverse load using the energy technique is presented. The three-dimensional constitutive relations which involves six stress components were used in the established, refined shear deformation theory to obtain a total potential energy functional. This theory obviates application of the shear correction factors for the solution to the problem. The governing equation of a thick plate was obtained by minimizing the total potential energy functional with respect to the out of plane displacement. The deflection functions which are in form of trigonometric were obtained as the solution of the governing equation. These deflection functions which are the product of the coefficient of deflection and shape function of the plate were substituted back into the energy functional, thereafter a realistic formula for calculating the deflection and stresses were obtained through minimizations with respect to the rotations and deflection coefficients. The values of the deflections and stresses obtained herein were tabulated and compared with those of previous 3D plate theory, refined plate theories and, classical plate theory (CPT) accordingly. It was observed that the result obtained herein varied more with those of CPT and RPT by 25.39% and 21.09% for all span-to-thickness ratios respectively. Meanwhile, the recorded percentage differences are as close as 7.17% for all span-to-thickness ratios, when compared with three dimensional plate analysis. This showed that exact 3D plate theory is more reliable than the shear deformation theory which are quite coarse for thick plate analysis. Doi: 10.28991/esj-2021-01320 Full Text: PDF


2014 ◽  
Vol 06 (06) ◽  
pp. 1450078 ◽  
Author(s):  
ABHINAV KUMAR ◽  
S. K. PANDA ◽  
RAJESH KUMAR

Dynamic instability analysis of laminated composite skew plate for different skew angles subjected to different type of linearly varying in-plane loadings is investigated. The analysis also includes the instability of skew plate under uniform bi-axial in-plane loading. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is mapped into a square plate over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram–Schmidt orthogonalization process. Different boundary conditions of skew plate have been correctly incorporated by using Rayleigh–Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials (BCOPs). The boundaries of dynamic instability regions are traced by the periodic solution of governing differential equations (Mathieu type equations) with period T and 2T. The width of instability region for uniform loading is higher than various types of linearly varying loadings (keeping the same peak intensity). Effect of various parameters like skew angle, aspect ratio, span-to-thickness ratio, boundary conditions and static load factor on dynamic instability has been investigated.


2016 ◽  
Vol 837 ◽  
pp. 52-57
Author(s):  
Martin Psotny

The stability analysis of an imperfect slender web subjected to the shearing load is presented, a specialized code based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. The peculiarities of the effects of the initial imperfections are investigated. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.


Author(s):  
D.O. Onwuka ◽  
O.M. Ibearugbulem ◽  
Duke Bertram

This study presents the analysis of thin rectangular orthotropic plate, simply supported at all edges (SSSS) subjected to both in-plane compression and lateral loads. The total potential energy functional was used in the analysis. The general variation of the total potential energy functional was done and the governing equation was obtained. The solution of the direct integration of the governing equation gave the deflection of the plate as a product of the coefficient of deflection and an orthogonal polynomial shape function. The expression for the coefficient of deflection was obtained by the direct variation of the total potential energy functional. This was used to derive the equation for the Lateral load parameter of an orthotropic thin rectangular plate carrying both in-plane compression and lateral loads based on the maximum deflection condition and also based on the elastic stability (yield strength) condition. The peculiar deflection equation for the SSSS plate was obtained using the formulated polynomial shape function. Numerical examples were carried out to determine the lateral load parameters corresponding to various plate thickness and permissible deflection for orthotropic thin SSSS plate carrying both in-plane compression and lateral load. In the same way, the lateral load parameters using the elastic stability condition (yield strength) were obtained for yield strength of 275 MPa, 355 MPa and 410 MPa


2011 ◽  
Vol 233-235 ◽  
pp. 1935-1939
Author(s):  
Yan Hui Qie ◽  
Bo Liu ◽  
Xiu Hong Wang ◽  
Xiao Lei Li ◽  
Bao Wang Ban

One kind of multi-void three-dimensional microstructure models based on homogenization method is constructed. Based on multi-void microstructure, the mathematical models for the topological structural optimization which takes maximizing the total potential energy as the objective function is constructed, then the Kuhn-Tucker optimality condition of the update method about the designs variable based on the porous microstructure can be gotten when optimization iterates. Finally, in explaining the employed algorithm an example is provided.


2021 ◽  
Vol 40 (2) ◽  
pp. 199-209
Author(s):  
I.C. Onyechere ◽  
U.C. Anya ◽  
O.M. Ibearugbulem ◽  
A.U. Igbojiaku ◽  
E.O. Ihemegbulem ◽  
...  

This study applied polynomial expressions as displacement and shear deformation functions in the free-vibration study of thick and moderately thick isotropic rectangular plates. Rectangular plates with two different edge conditions investigated in this work are: one with simple supports at three of its edges and with no support at the other edge denoted with the acronym (SSFS) and a rectangular plate with simple supports at opposite edges while the other opposite edges has a fixed support at one edge and no support at the other edge, this is denoted with the acronym (CSFS). The total potential energy of the plate was derived using the general theory of elasticity. The general governing equation of the plate was derived by minimizing the total potential energy equation of the plate. Edge conditions of the SSFS and CSFS plates were met and substituted into the general governing equation to obtain a linear expression which was solved to generate fundamental natural frequency function for the plates with various span-depth proportion (m/t) and planar dimensions proportion (n/m). The results obtained from this research were found to agree favourably with the results of similar problems in the literature upon comparison.


Author(s):  
Carmel Majidi ◽  
George G. Adams

The solution of adhesion problems with elastic plates generally involves solving a boundary-value problem with an assumed contact area. The contact region is then found by minimizing the total potential energy with respect to the contact area (i.e. the contact radius for the axisymmetric case). Such a procedure can be extremely long and tedious. Here, we show that the inclusion of adhesion is equivalent to specifying a discontinuous internal bending moment at the contact region boundary. The magnitude of this moment discontinuity is related to the work of adhesion and flexural rigidity of the plate. Such a formulation can greatly reduce the algebraic complexity of solving these problems. It is noted that the related plate contact problems without adhesion can also be solved by minimizing the total potential energy. However, it has long been recognized that it is mathematically more efficient to find the contact area by specifying a continuous internal bending moment at the boundary of the contact region. Thus, our moment discontinuity method can be considered to be a generalization of that procedure which is applicable for problems with adhesion.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

Abstract This paper discusses a novel optimization method to design statically balanced manipulators. Only springs are used to balance the manipulators composed of revolute (R) joints. Since the total potential energy of the system is constant when statically balanced, the sum of squared differences between the two potential energy when giving different random values of joint variables is set as the objective function. Then the optimization tool of MATLAB is used to obtain the spring attachment points. The results show that for a 1-link manipulator mounted on an R joint, in addition to attaching the spring right above the R joint, the attachment point can have offset. It also indicates that an arbitrary spatial manipulator with n link, whose weight cannot be neglected, can be balanced using n springs. Using this method, the static balancing can be readily achieved, with multiple solutions.


Author(s):  
Antonio Carminelli ◽  
Giuseppe Catania

This paper deals with an adaptive refinement technique of a B-spline degenerate shell finite element model, for the free vibration analysis of curved thin and moderately thick-walled structures. The automatic refinement of the solution is based on an error functional related to the density of the total potential energy. The model refinement is generated by locally increasing, in a sub-domain R of a local patch domain, the number of shape functions while maintaining constant the functions polynomial order. The local refinement strategy is described in a companion paper, written by the same authors of this paper and presented in this Conference. A two-step iterative procedure is proposed. In the first step, one or more sub domains to be refined are identified by means of a point-wise error functional based on the system total potential energy local density. In the second step, the number of shape functions to be added is iteratively increased until the difference of the total potential energy, calculated on the sub domain between two iteration, is below a user defined tolerance. A numerical example is presented in order to test the proposed approach. Strengths and limits of the approach are critically discussed.


Sign in / Sign up

Export Citation Format

Share Document