scholarly journals Analytical Study of Bending Characteristics of an Elastic Rectangular Plate using Direct Variational Energy Approach with Trigonometric Function

2021 ◽  
Vol 5 (6) ◽  
pp. 916-928
Author(s):  
F. C. Onyeka ◽  
B. O. Mama

In this paper, an analytical three-dimensional (3D) bending characteristic of an isotropic rectangular thick plate with all edges simply supported (SSSS) and carrying uniformly distributed transverse load using the energy technique is presented. The three-dimensional constitutive relations which involves six stress components were used in the established, refined shear deformation theory to obtain a total potential energy functional. This theory obviates application of the shear correction factors for the solution to the problem. The governing equation of a thick plate was obtained by minimizing the total potential energy functional with respect to the out of plane displacement. The deflection functions which are in form of trigonometric were obtained as the solution of the governing equation. These deflection functions which are the product of the coefficient of deflection and shape function of the plate were substituted back into the energy functional, thereafter a realistic formula for calculating the deflection and stresses were obtained through minimizations with respect to the rotations and deflection coefficients. The values of the deflections and stresses obtained herein were tabulated and compared with those of previous 3D plate theory, refined plate theories and, classical plate theory (CPT) accordingly. It was observed that the result obtained herein varied more with those of CPT and RPT by 25.39% and 21.09% for all span-to-thickness ratios respectively. Meanwhile, the recorded percentage differences are as close as 7.17% for all span-to-thickness ratios, when compared with three dimensional plate analysis. This showed that exact 3D plate theory is more reliable than the shear deformation theory which are quite coarse for thick plate analysis. Doi: 10.28991/esj-2021-01320 Full Text: PDF

2022 ◽  
Vol 8 (1) ◽  
pp. 60-80
Author(s):  
F. C. Onyeka ◽  
B. O. Mama ◽  
T. E. Okeke

In this paper, direct variational calculus was put into practical use to analyses the three dimensional (3D) stability of rectangular thick plate which was simply supported at all the four edges (SSSS) under uniformly distributed compressive load. In the analysis, both trigonometric and polynomial displacement functions were used. This was done by formulating the equation of total potential energy for a thick plate using the 3D constitutive relations, from then on, the equation of compatibility was obtained to determine the relationship between the rotations and deflection. In the same way, governing equation was obtained through minimization of the total potential energy functional with respect to deflection. The solution of the governing equation is the function for deflection. Functions for rotations were obtained from deflection function using the solution of compatibility equations. These functions, deflection and rotations were substituted back into the energy functional, from where, through minimizations with respect to displacement coefficients, formulas for analysis were obtained. In the result, the critical buckling loads from the present study are higher than those of refined plate theories with 7.70%, signifying the coarseness of the refined plate theories. This amount of difference cannot be overlooked. However, it is shown that, all the recorded average percentage differences between trigonometric and polynomial approaches used in this work and those of 3D exact elasticity theory is lower than 1.0%, confirming the exactness of the present theory. Thus, the exact 3D plate theory obtained, provides a good solution for the stability analysis of plate and, can be recommended for analysis of any type of rectangular plates under the same loading and boundary condition. Doi: 10.28991/CEJ-2022-08-01-05 Full Text: PDF


2005 ◽  
Vol 72 (6) ◽  
pp. 809-817 ◽  
Author(s):  
Jun-Sik Kim ◽  
Maenghyo Cho

A new first-order shear deformation theory (FSDT) has been developed and verified for laminated plates and sandwich plates. Based on the definition of Reissener–Mindlin’s plate theory, the average transverse shear strains, which are constant through the thickness, are improved to vary through the thickness. It is assumed that the displacement and in-plane strain fields of FSDT can approximate, in an average sense, those of three-dimensional theory. Relationship between FSDT and three-dimensional theory has been systematically established in the averaged least-square sense. This relationship provides the closed-form recovering relations for three-dimensional variables expressed in terms of FSDT variables as well as the improved transverse shear strains. This paper makes two main contributions. First an enhanced first-order shear deformation theory (EFSDT) has been developed using an available higher-order plate theory. Second, it is shown that the displacement fields of any higher-order plate theories can be recovered by EFSDT variables. The present approach is applied to an efficient higher-order plate theory. Comparisons of deflection and stresses of the laminated plates and sandwich plates using present theory are made with the original FSDT and three-dimensional exact solutions.


Author(s):  
D.O. Onwuka ◽  
O.M. Ibearugbulem ◽  
Duke Bertram

This study presents the analysis of thin rectangular orthotropic plate, simply supported at all edges (SSSS) subjected to both in-plane compression and lateral loads. The total potential energy functional was used in the analysis. The general variation of the total potential energy functional was done and the governing equation was obtained. The solution of the direct integration of the governing equation gave the deflection of the plate as a product of the coefficient of deflection and an orthogonal polynomial shape function. The expression for the coefficient of deflection was obtained by the direct variation of the total potential energy functional. This was used to derive the equation for the Lateral load parameter of an orthotropic thin rectangular plate carrying both in-plane compression and lateral loads based on the maximum deflection condition and also based on the elastic stability (yield strength) condition. The peculiar deflection equation for the SSSS plate was obtained using the formulated polynomial shape function. Numerical examples were carried out to determine the lateral load parameters corresponding to various plate thickness and permissible deflection for orthotropic thin SSSS plate carrying both in-plane compression and lateral load. In the same way, the lateral load parameters using the elastic stability condition (yield strength) were obtained for yield strength of 275 MPa, 355 MPa and 410 MPa


2017 ◽  
Vol 21 (6) ◽  
pp. 1906-1929 ◽  
Author(s):  
Abdelkader Mahmoudi ◽  
Samir Benyoucef ◽  
Abdelouahed Tounsi ◽  
Abdelkader Benachour ◽  
El Abbas Adda Bedia ◽  
...  

In this paper, a refined quasi-three-dimensional shear deformation theory for thermo-mechanical analysis of functionally graded sandwich plates resting on a two-parameter (Pasternak model) elastic foundation is developed. Unlike the other higher-order theories the number of unknowns and governing equations of the present theory is only four against six or more unknown displacement functions used in the corresponding ones. Furthermore, this theory takes into account the stretching effect due to its quasi-three-dimensional nature. The boundary conditions in the top and bottoms surfaces of the sandwich functionally graded plate are satisfied and no correction factor is required. Various types of functionally graded material sandwich plates are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Numerical examples, selected from the literature, are illustrated. A good agreement is obtained between numerical results of the refined theory and the reference solutions. A parametric study is presented to examine the effect of the material gradation and elastic foundation on the deflections and stresses of functionally graded sandwich plate resting on elastic foundation subjected to thermo-mechanical loading.


1982 ◽  
Vol 25 (203) ◽  
pp. 720-727
Author(s):  
Michiaki KOBAYASHI ◽  
Toru NAGASAWA ◽  
Hiromasa ISHIKAWA ◽  
Kin-ichi HATA

2020 ◽  
Vol 231 (10) ◽  
pp. 4381-4395 ◽  
Author(s):  
Krzysztof Magnucki ◽  
Jerzy Lewinski ◽  
Ewa Magnucka-Blandzi

Abstract The paper is devoted to simply supported beams under three-point bending. Their mechanical properties symmetrically vary in the depth direction. The individual shear deformation theory for beams of such features is proposed. Based on the principle of stationary total potential energy the differential equations of equilibrium are obtained. The system of the equations is analytically solved, and the shear coefficients and deflections of example beams are calculated. The solution is compared with other analytical results obtained with the use of another deformation function. Moreover, the bending problem of these beams is also numerically studied using the finite element method. Results of analytical and numerical studies are presented in Figures and Tables.


2002 ◽  
Vol 02 (02) ◽  
pp. 163-184 ◽  
Author(s):  
A. CHAKRABARTI ◽  
A. H. SHEIKH

A triangular element based on Reddy's higher order shear deformation theory is developed for free vibration analysis of composite plates. In the Reddy's plate theory, the transverse shear stress varies in a parabolic manner across the plate thickness and vanishes at the top and bottom surfaces of the plate. Moreover, it does not involve any additional unknowns. Thus the plate theory is quite simple and elegant. Unfortunately, such an attractive plate theory cannot be exploited as expected in finite element analysis, primarily due to the difficulties in satisfying the inter-element continuity requirement. This has inspired us to develop the present element, which has three corner nodes and three mid-side nodes with the same number of degrees of freedom. To demonstrate the performance of the element, numerical examples of isotropic and composite plates under different situations are solved. The results are compared with the analytical solutions and other published results, which show the accuracy and range of applicability of the proposed element in the problem of vibration analysis.


2014 ◽  
Vol 06 (06) ◽  
pp. 1450078 ◽  
Author(s):  
ABHINAV KUMAR ◽  
S. K. PANDA ◽  
RAJESH KUMAR

Dynamic instability analysis of laminated composite skew plate for different skew angles subjected to different type of linearly varying in-plane loadings is investigated. The analysis also includes the instability of skew plate under uniform bi-axial in-plane loading. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is mapped into a square plate over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram–Schmidt orthogonalization process. Different boundary conditions of skew plate have been correctly incorporated by using Rayleigh–Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials (BCOPs). The boundaries of dynamic instability regions are traced by the periodic solution of governing differential equations (Mathieu type equations) with period T and 2T. The width of instability region for uniform loading is higher than various types of linearly varying loadings (keeping the same peak intensity). Effect of various parameters like skew angle, aspect ratio, span-to-thickness ratio, boundary conditions and static load factor on dynamic instability has been investigated.


2020 ◽  
Vol 39 (1) ◽  
pp. 52-62
Author(s):  
O.M. Ibearugbulem ◽  
S.I. Ebirim ◽  
U.C. Anya ◽  
L.O. Ettu

This work analysed the free vibration and stability of thick isotropic and orthotropic plates with SSSS and SSFS support conditions by applying the alternative II theory based on polynomial shape function. The total potential energy which was obtained by combining the strain energy and external work was reduced to three governing equations using Ritz method. Polynomial shape function which varies with Poisson’s ratio was substituted into the governing equation to obtain the fundamental natural frequency, linear frequency and critical buckling load. The values of frequencies of the first mode and critical loads obtained were compared with those obtained using first order shear deformation theory. For span depth ratio of 10, the fundamental linear frequency for orthotropic SSFS plate corresponding to modulus of elasticity ratios (E1/E2) of 10, 25 and 40 are 0.00156, 0.00219 and 0.00255Hz. The corresponding values using first order shear deformation theory are 0.00152, 0.00212 and 0.00245Hz. Keywords: Fundamental natural frequency, SSSS plate, SSFS plate, Ritz method, Orthotropic thick plate, Isotropic thick plate, Stability, Free vibration


Sign in / Sign up

Export Citation Format

Share Document