scholarly journals Statistical Characteristics of Flow Field through Open and Semi-Closed Bileaflet Mechanical Heart Valve

2020 ◽  
Vol 2 (4) ◽  
pp. 184-196
Author(s):  
Oleksandr Voskoboinyk ◽  
Lidiia Tereshchenko ◽  
Vladimir Voskoboinick ◽  
Gabriela Fernandez ◽  
Andrey Voskoboinick ◽  
...  

The formation of thrombi on the streamlined surface of the bileaflet mechanical heart valves is one of the main disadvantages of such valves. Thrombi block the valve leaflets and disrupt the cardiovascular system. Diagnosis of thrombosis of the bileaflet mechanical heart valves is relevant and requires the creation of effective diagnostic tools. Hydroacoustic registration of the heart noise is one of the methods for diagnosing the operation of a mechanical heart valve. The purpose of the research is to determine the statistical characteristics of the vortex and jet flow through the open and semi-closed bileaflet mechanical heart valve, to identify hydroacoustic differences and diagnostic signs to determine the operating conditions of the valve. Experimental studies were conducted in laboratory conditions on a model of the left atrium and left ventricle of the heart between which there was the bileaflet mechanical heart valve. Hydrodynamic noise was recorded by miniature pressure sensors, which were located downstream of the valve. The vortex and jet flow behind the prosthetic heart valve were non-linear, random processes and were analyzed using the methods of mathematical statistics and probability theory. The integral and spectral characteristics of the pressure field were obtained and the differences in the noise levels and their spectral components near the central and side jets for the open and semi-closed mitral valve were established. It was shown that hydroacoustic measurements could be an effective basis for developing diagnostic equipment for monitoring the bileaflet mechanical heart valve operation. Doi: 10.28991/SciMedJ-2020-0204-1 Full Text: PDF

Author(s):  
Marcio H. Forleo ◽  
Brennan M. Johnson ◽  
Lakshmi P. Dasi

Implantation of a bileaflet mechanical heart valve (BMHV) continues to be associated with a risk of thromboembolic complications despite anti-coagulation therapy1. This has been attributed to the structurally rigid design of the leaflets and valve mechanics combined with an intricate hinge mechanism for the rigid leaflets. The lack of a built in compliance within the valve mechanics presumably leads to sharp stress gradients within the flow as well as a violent closure of the valve often associated with the audible impact of the leaflets to the housing, and a potential for momentary cavitation of blood in the wake of leaflet impact.


Author(s):  
C. Hutchison ◽  
P. E. Sullivan ◽  
C. R. Ethier

Each year over 180,000 mechanical heart valves are implanted worldwide, with the bileaflet mechanical heart valve (BiMHV) accounting for approximately 85% of all valve replacements [1,2]. Although much improved from previous valve designs, aortic BiMHV design is far from ideal, and serious complications such as thromboembolism and hemolysis often result. Hemolysis and platelet activation are thought to be caused by turbulent Reynolds shear stresses in the flow [1]. Numerous previous studies have examined aortic BiMHV flow using LDA and two component Particle Image Velocimetry (PIV), and have shown the flow to be complex and three-dimensional [3,4]. Stereoscopic PIV (SPIV) can obtain all three velocity components on a flow plane, and hence has the potential to provide better understanding of three dimensional flow characteristics. The objective of the current study was to use SPIV to measure steady flow, including turbulence properties, downstream of a BiMHV in a modeled aorta. The resulting dataset will be useful for CFD model validation, and the intent is to make it publicly available.


2012 ◽  
Vol 569 ◽  
pp. 487-490
Author(s):  
Liang Liang Wu ◽  
Guo Jiang Wan ◽  
Feng Zhou ◽  
Jie Yang ◽  
Nan Huang

The Bileaflet Mechanical Heart Valve (BMHV) has been the most successful replacement mechanical heart valve, and is currently the most commonly implanted mechanical valve. Although the BMHV is an improvement over previous mechanical heart valves, there are still serious associated complications with its use that must be eliminated. After the completion of the processing and surface modification, heart valve ring and heart valve leaflets constitute a single whole with mechanical method to achieve its function process. In order to ensure that the heart valve is stable and reliable in service, it is particularly important to improve the assembly quality. The theoretical analysis and simulation used of ANSYS Workbench software for the behavior of the heart valve assembly have been done, the experimental results were verified by testing apparatus, which is a helpful tool used to simulate the new structure of the heart valve assembly, and play a certain significance to improve the accuracy of the assembly.


Author(s):  
M J King ◽  
T David ◽  
J Fisher

The effect of leaflet opening angle on flow through a bileaflet mechanical heart valve has been investigated using computational fluid dynamics (CFD). Steady state, laminar flow for a Newtonian fluid at a Reynolds number of 1500 was used in the two-dimensional model of the valve, ventricle, sinus and aorta. This computational model was verified using one-dimensional laser Doppler velocimetry (LDV). Although marked differences in the flow fields and energy dissipation of the jets downstream of the valve were found between the CFD predictions and the three-dimensional experimental model, both methods showed similar trends in the changes of the flow fields as the leaflet opening angle was altered. As the opening angle increased the area of recirculating fluid downstream of the leaflets, the pressure drop across the valve and the volumetric flow rate through the outer orifice decreased. For opening angles greater than 80° the jet through the outer orifice recombined with the central jet downstream of the leaflet; for an opening angle of 78° the jet through the outer orifice impinged on the aortic wall before recombining with the central jet. This study suggests that the opening angle has a marked effect on the flow downstream of the bileaflet mechanical heart valve and that valves with opening angles greater than 80° are preferable.


Author(s):  
Stephen Gerfer ◽  
Maria Grandoch ◽  
Thorsten C.W. Wahlers ◽  
Elmar W. Kuhn

AbstractPatients with a mechanical heart valve need a lifelong anticoagulation due to the increased risk of valve thrombosis and thrombo-embolism. Currently, vitamin K antagonists (VKA) are the only approved class of oral anticoagulants, but relevant interactions and side effects lead to a large number of patients not achieving the optimal therapeutic target international normalized ration (INR). Therefore, steady measurements of the INR are imperative to ensure potent anticoagulation within a distinctive range. Direct oral anticoagulants (DOACs) with newer agents could serve as a possible alternative to VKAs in this patient cohort. DOACs are approved for several indications, e.g., atrial fibrillation (AF). They only have a minor interaction potential, which is why monitoring is not needed. Thereby, DOACs improve the livability of patients in need of chronical anticoagulation compared with VKAs. In contrast to dual platelet inhibition using aspirin in combination with an ADP receptor antagonist and the direct thrombin inhibitor dabigatran, the oral factor Xa inhibitors apixaban and rivaroxaban show promising results according to current evidence. In small-scale studies, factor Xa inhibitors were able to prevent thrombosis and thrombo-embolic events in patients with mechanical heart valves. Finally, DOACs seem to represent a feasible treatment option in patients with mechanical heart valves, but further studies are needed to evaluate clinical safety. In addition to the ongoing PROACT Xa trial with apixaban in patients after aortic On-X valve implantation, studies in an all-comer collective with rivaroxaban could be promising.


2020 ◽  
pp. 1753495X2092493
Author(s):  
Francois Dos Santos ◽  
Lucia Baris ◽  
Alice Varley ◽  
Jerome Cornette ◽  
Joanna Allam ◽  
...  

Background Pregnant women with mechanical heart valves are at significant risk of obstetric/cardiac complications. This study compares the anticoagulation management in two obstetric cardiac centres. Methods Retrospective case-note review from Chelsea and Westminster/Royal Brompton Hospitals (CR) and Erasmus Medical Centre (EMC). Main outcome measure was mechanical heart valve thrombosis. Results Nineteen pregnancies from CR and 25 pregnancies from EMC were included. Most women were on low-molecular-weight heparin (LMWH) throughout pregnancy at CR, whereas at EMC most had LMWH in the first trimester and vitamin K antagonists in subsequent trimesters. Peak anti-factor Xa were performed monthly at CR, levels 0.39–1.51 IU/mL (mean 0.82 IU/mL). Anticoagulation management peri-partum was inconsistent. Delivery was mainly by Caesarean section at CR (74%) and vaginal delivery at EMC (64%). No maternal deaths and only one mechanical heart valve thrombosis at CR. Two mechanical heart valve thromboses and one maternal death at EMC. Conclusion Peri-partum anticoagulation strategies, anticoagulation monitoring and mode of delivery inconsistencies reported.


2021 ◽  
Author(s):  
◽  
Louis Fisher ◽  
Victoria Speed ◽  
Helen J Curtis ◽  
Christopher T Rentsch ◽  
...  

National guidance was issued during the COVID-19 pandemic to switch patients on warfarin to direct oral anticoagulants (DOACs) where appropriate as these require less frequent blood testing. DOACs are not recommended for patients with mechanical heart valves. We conducted a retrospective cohort study of DOAC prescribing in people with a record of a mechanical heart valve between September 2019 and May 2021, and describe the characteristics of this population. We identified 15,457 individuals with a mechanical heart valve recorded in their records, of whom 1058 (6.8%) had been prescribed a DOAC during the study period. 767 individuals with a record of a mechanical heart valve were currently prescribed a DOAC as of May 31st 2020. This is suggestive of inappropriate prescribing of DOACs in individuals with mechanical heart valves. Direct alerts have been issued to clinicians through their EHR software informing the issue. We show that the OpenSAFELY platform can be used for rapid audit and feedback to mitigate the indirect health impacts of COVID-19 on the NHS. We will monitor changes in prescribing for this risk group over the following months.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
L. H. Herbertson ◽  
S. Deutsch ◽  
K. B. Manning

Blood damage and thrombosis are major complications that are commonly seen in patients with implanted mechanical heart valves. For this in vitro study, we isolated the closing phase of a bileaflet mechanical heart valve to study near valve fluid velocities and stresses. By manipulating the valve housing, we gained optical access to a previously inaccessible region of the flow. Laser Doppler velocimetry and particle image velocimetry were used to characterize the flow regime and help to identify the key design characteristics responsible for high shear and rotational flow. Impact of the closing mechanical leaflet with its rigid housing produced the highest fluid stresses observed during the cardiac cycle. Mean velocities as high as 2.4 m/s were observed at the initial valve impact. The velocities measured at the leaflet tip resulted in sustained shear rates in the range of 1500–3500 s−1, with peak values on the order of 11,000–23,000 s−1. Using velocity maps, we identified regurgitation zones near the valve tip and through the central orifice of the valve. Entrained flow from the transvalvular jets and flow shed off the leaflet tip during closure combined to generate a dominant vortex posterior to both leaflets after each valve closing cycle. The strength of the peripheral vortex peaked within 2 ms of the initial impact of the leaflet with the housing and rapidly dissipated thereafter, whereas the vortex near the central orifice continued to grow during the rebound phase of the valve. Rebound of the leaflets played a secondary role in sustaining closure-induced vortices.


Author(s):  
Hélène A. Simon ◽  
Liang Ge ◽  
Iman Borazjani ◽  
Fotis Sotiropoulos ◽  
Ajit P. Yoganathan

Native heart valves with limited functionality are commonly replaced by prosthetic heart valves. Since the first heart valve replacement in 1960, more than three million valves have been implanted worldwide. The most widely implanted prosthetic heart valve design is currently the bileaflet mechanical heart valve (BMHV), with more than 130,000 implants every year worldwide. However, studies have shown that this valve design can still cause major complications, including hemolysis, platelet activation, and thromboembolic events. Clinical reports and recent in vitro experiments suggest that these thrombogenic complications are associated with the hemodynamic stresses imposed on blood elements by the complex non-physiologic flow induced by the valve, in particular in the hinge region.


2019 ◽  
Vol 28 (7) ◽  
pp. 431-443
Author(s):  
Elsmari Wium ◽  
Christiaan Johannes Jordaan ◽  
Lezelle Botes ◽  
Francis Edwin Smit

Due to the prevalence of rheumatic heart disease in the developing world, mechanical heart valves in the younger patient population remain the prostheses of choice if repair is not feasible. Despite their durability, mechanical valves are burdened by coagulation and thromboembolism. Modern design tools can be utilized during the design process of mechanical valves, which allow a more systematic design approach and more detailed analysis of the blood flow through and around valves. These tools include computer-aided design, manufacturing, and engineering, such as computational fluid dynamics and finite element analysis, modern manufacturing techniques such as additive manufacturing, and sophisticated in-vitro and in-vivo tests. Following this systematic approach, a poppet valve was redesigned and the results demonstrate the benefits of the method. More organized flow patterns and fewer complex fluid structures were observed. The alternative trileaflet valve design has also been identified as a potential solution and, if a similar design approach is adopted, it could lead to the development of an improved mechanical heart valve in the future. It is imperative that researchers in developing countries continue their search for a mechanical heart valve with a reduced thromboembolic risk, requiring less or no anticoagulation.


Sign in / Sign up

Export Citation Format

Share Document