scholarly journals Secure Communication over Zero-Private Capacity Quantum Channels

10.29007/pcxv ◽  
2018 ◽  
Author(s):  
Laszlo Gyongyosi ◽  
Sandor Imre

In this work a new phenomenon called polaractivation is introduced. Polaractivation is based on quantum polar encoding and the result is similar to the superactivation effect — positive capacity can be achieved with zero-capacity quantum channels. However, polaractivation has many advantages over the superactivation: it is limited neither by any preliminary conditions on the quantum channel nor on the maps of other channels involved in the joint channel structure. We prove that the polaractivation works for arbitrary zero-private capacity quantum channels and we demonstrate, that the symmetric private classical capacity of arbitrary zero-private capacity quantum channels is polaractive.

2017 ◽  
Vol 17 (5&6) ◽  
pp. 380-398
Author(s):  
Ching-Yi Lai ◽  
Runyao Duan

Duan and Winter studied the one-shot zero-error classical capacity of a quantum channel assisted by quantum non-signalling correlations, and formulated this problem as a semidefinite program depending only on the Kraus operator space of the channel. For the class of classical-quantum channels, they showed that the asymptotic zero-error classical capacity assisted by quantum non-signalling correlations, minimized over all classicalquantum channels with a confusability graph G, is exactly log ϑ(G), where ϑ(G) is the celebrated Lov´asz theta function. In this paper, we show that the one-shot capacity for a classical-quantum channel, induced from a circulant graph G defined by equal-sized cyclotomic cosets, is logbϑ(G)c, which further implies that its asymptotic capacity is log ϑ(G). This type of graphs include the cycle graphs of odd length, the Paley graphs of prime vertices, and the cubit residue graphs of prime vertices. Examples of other graphs are also discussed. This gives Lov´asz ϑ function another operational meaning in zero-error classical-quantum communication.


2006 ◽  
Vol 04 (03) ◽  
pp. 439-452 ◽  
Author(s):  
NICOLAS J. CERF ◽  
JULIEN CLAVAREAU ◽  
JÉRÉMIE ROLAND ◽  
CHIARA MACCHIAVELLO

Gaussian quantum channels have recently attracted a growing interest, since they may lead to a tractable approach to the generally hard problem of evaluating quantum channel capacities. However, the analysis performed so far has always been restricted to memoryless channels. Here, we consider the case of a bosonic Gaussian channel with memory, and show that the classical capacity can be significantly enhanced by employing entangled input symbols instead of product symbols.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 352 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Yi-Tao Gou ◽  
Jin-Xing Hou ◽  
Li-Ke Cao ◽  
Xiao-Hui Wang

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.


2002 ◽  
Vol 2 (5) ◽  
pp. 367-378
Author(s):  
V.N. Gorbachev ◽  
A.I. Zhiliba ◽  
A.I. Trubilko ◽  
A.A. Rodichkina

A set of protocols for teleportation and dense coding schemes based on a multiparticle quantum channel, represented by the $N$-particle entangled states of the GHZ class, is introduced. Using a found representation for the GHZ states, it was shown that for dense coding schemes enhancement of the classical capacity of the channel due from entanglement is $N/N-1$. Within the context of our schemes it becomes clear that there is no one-to one correspondence between teleportation and dense coding schemes in comparison when the EPR channel is exploited. A set of schemes, for which two additional operations as entanglement and disentanglement are permitted, is considered.


2020 ◽  
Vol 20 (15&16) ◽  
pp. 1261-1280
Author(s):  
Francisco Delgado ◽  
Carlos Cardoso-Isidoro

Indefinite causal order has introduced disruptive procedures to improve the fidelity of quantum communication by introducing the superposition of { orders} on a set of quantum channels. It has been applied to several well characterized quantum channels as depolarizing, dephasing and teleportation. This work analyses the behavior of a parametric quantum channel for single qubits expressed in the form of Pauli channels. Combinatorics lets to obtain affordable formulas for the analysis of the output state of the channel when it goes through a certain imperfect quantum communication channel when it is deployed as a redundant application of it under indefinite causal order. In addition, the process exploits post-measurement on the associated control to select certain components of transmission. Then, the fidelity of such outputs is analysed to characterize the generic channel in terms of its parameters. As a result, we get notable enhancement in the transmission of information for well characterized channels due to the combined process: indefinite causal order plus post-measurement.


2015 ◽  
Vol 15 (7&8) ◽  
pp. 685-693
Author(s):  
Chi-Hang F. Fung ◽  
H. F. Chau ◽  
Chi-Kwong Li ◽  
Nung-Sing Sze

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A {\bf 88}, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.


Sign in / Sign up

Export Citation Format

Share Document