scholarly journals MOLECULAR DYNAMICS STUDY OF OLEIC ACID-BASED SURFACTANTS FOR ENHANCED OIL RECOVERY

2020 ◽  
Vol 41 (3) ◽  
pp. 125-135
Author(s):  
Aang Suhendar ◽  
Rukman Hertadi ◽  
Yani F Alli

Surfactants have been intensively used for Enhanced Oil Recovery (EOR). Nevertheless, environmental issues cause some surfactants to become unfavored in EOR application. Biodegradable surfactants are the suitable choice to make the environment safer. However, screening surfactants that have a good performance for EOR are time-consuming and costly. Molecular Dynamics (MD) simulation is an alternative solution to reduce cost and time. In the present study, oleic acid-based surfactants that combined with the various length of polyethylene glycol were studied. The potential surfactants were screened by MD simulation to evaluate their ability to reduce the Interfacial Tension (IFT) between oil and water layers, which is the by GROMACS software with Gromos force field and SPC water model. Carboxyl-terminal of the oleic acid was substituted by a different length of polyethylene glycol. All MD simulations were prepared in octadecanewater mixture with temperature ranges of 303-363 K. Our simulations found that the increasing number of polyethylene glycol was not always followed by the decreasing of IFT value between octadecane and water layers. These results were validated with the experimental data and found the similar IFT profile. The simulation of oil emulsification showed that all surfactant samples have good performance and stability as exhibited by their emulsification rate and emulsion stability in different temperatures. The last test to get the best surfactant was the wetability test. The simulation gave the result that both PEG100-oleic and PEG400-oleic were able to change wetability of rocks from oil-wet to water-wet. Accordingly, PEG400-oleic is the best nonionic surfactant candidate due to its performance in each simulation test.

2021 ◽  
Vol 1053 (1) ◽  
pp. 012068
Author(s):  
Teodora Dasilva ◽  
Ronny Windu Sudrajat ◽  
Mega Kasmiyatun ◽  
Slamet Priyanto ◽  
Suherman ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1088 ◽  
Author(s):  
Yang Kang ◽  
Dunhong Zhou ◽  
Qiang Wu ◽  
Fuyan Duan ◽  
Rufang Yao ◽  
...  

The physical properties—including density, glass transition temperature (Tg), and tensile properties—of polybutadiene (PB), polystyrene (PS) and poly (styrene-butadiene-styrene: SBS) block copolymer were predicted by using atomistic molecular dynamics (MD) simulation. At 100 K, for PB and SBS under uniaxial tension with strain rate ε ˙ = 1010 s−1 and 109 s−1, their stress–strain curves had four features, i.e., elastic, yield, softening, and strain hardening. At 300 K, the tensile curves of the three polymers with strain rates between 108 s−1 and 1010 s−1 exhibited strain hardening following elastic regime. The values of Young’s moduli of the copolymers were independent of strain rate. The plastic modulus of PS was independent of strain rate, but the Young’s moduli of PB and SBS depended on strain rate under the same conditions. After extrapolating the Young’s moduli of PB and SBS at strain rates of 0.01–1 s−1 by the linearized Eyring-like model, the predicted results by MD simulations were in accordance well with experimental results, which demonstrate that MD results are feasible for design of new materials.


2013 ◽  
Vol 9 ◽  
pp. 118-134 ◽  
Author(s):  
Jutta Erika Helga Köhler ◽  
Nicole Grczelschak-Mick

Four highly ordered hydrogen-bonded models of β-cyclodextrin (β-CD) and its inclusion complex with benzene were investigated by three different theoretical methods: classical quantum mechanics (QM) on AM1 and on the BP/TZVP-DISP3 level of approximation, and thirdly by classical molecular dynamics simulations (MD) at different temperatures (120 K and 273 to 300 K). The hydrogen bonds at the larger O2/O3 rim of empty β-CDs prefer the right-hand orientation, e.g., O3-H…O2-H in the same glucose unit and bifurcated towards …O4 and O3 of the next glucose unit on the right side. On AM1 level the complex energy was −2.75 kcal mol−1 when the benzene molecule was located parallel inside the β-CD cavity and −2.46 kcal mol−1 when it was positioned vertically. The AM1 HOMO/LUMO gap of the empty β-CD with about 12 eV is lowered to about 10 eV in the complex, in agreement with data from the literature. AM1 IR spectra displayed a splitting of the O–H frequencies of cyclodextrin upon complex formation. At the BP/TZVP-DISP3 level the parallel and vertical positions from the starting structures converged to a structure where benzene assumes a more oblique position (−20.16 kcal mol−1 and −20.22 kcal mol−1, resp.) as was reported in the literature. The character of the COSMO-RS σ-surface of β-CD was much more hydrophobic on its O6 rim than on its O2/O3 side when all hydrogen bonds were arranged in a concerted mode. This static QM picture of the β-CD/benzene complex at 0 K was extended by MD simulations. At 120 K benzene was mobile but always stayed inside the cavity of β-CD. The trajectories at 273, 280, 290 and 300 K certainly no longer displayed the highly ordered hydrogen bonds of β-CD and benzene occupied many different positions inside the cavity, before it left the β-CD finally at its O2/O3 side.


SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 832-841 ◽  
Author(s):  
Felipe Perez ◽  
Deepak Devegowda

Summary In this work we use molecular dynamics simulations to investigate the interactions during soaking time between an organic solvent (pure ethane) initially in a microfracture and a mixture of hydrocarbons representative of a volatile oil, and other reservoir fluids such as carbon dioxide and water, originally saturating an organic pore network with a predominant pore size of 2.5 nm. We present evidence of the in-situ fractionation in liquid-rich shales and its implications in enhanced oil recovery (EOR) projects. We also discuss the behavior of the larger and heavier molecules in the fluid mixture while the solvent interacts with them. Notably, prior to solvent invasion of the pores and further mixing with the reservoir fluids, the heavier hydrocarbons in the mixture are initially adsorbed onto the pore surface and pore throats surface, partially clogging them. We show that the porous structure of kerogen and the presence of adsorbed molecules of asphaltenes and resins in the pore throats act as a molecular sieve and may be one of the reasons for the fractionation of the reservoir fluids. The differing ability of the solvent to desorb and mix with different hydrocarbon species is another reason for the fractionation occurring during soaking. Our simulations show that the production of reservoir fluids occurs due to a countercurrent diffusive flow from the organic pore network to the microfracture driven by the concentration gradient between the two regions.


2020 ◽  
Vol 36 (18) ◽  
pp. 4714-4720
Author(s):  
Farzin Sohraby ◽  
Mostafa Javaheri Moghadam ◽  
Masoud Aliyar ◽  
Hassan Aryapour

Abstract Summary Small molecules such as metabolites and drugs play essential roles in biological processes and pharmaceutical industry. Knowing their interactions with biomacromolecular targets demands a deep understanding of binding mechanisms. Dozens of papers have suggested that discovering of the binding event by means of conventional unbiased molecular dynamics (MD) simulation urges considerable amount of computational resources, therefore, only one who holds a cluster or a supercomputer can afford such extensive simulations. Thus, many researchers who do not own such resources are reluctant to take the benefits of running unbiased MD simulation, in full atomistic details, when studying a ligand binding pathway. Many researchers are impelled to be content with biased MD simulations which seek its validation due to its intrinsic preconceived framework. In this work, we have presented a workable stratagem to encourage everyone to perform unbiased (unguided) MD simulations, in this case a protein–ligand binding process, by typical desktop computers and so achieve valuable results in nanosecond time scale. Here, we have described a dynamical binding’s process of an anticancer drug, the dasatinib, to the c-Src kinase in full atomistic details for the first time, without applying any biasing force or potential which may lead the drug to artificial interactions with the protein. We have attained multiple independent binding events which occurred in the nanosecond time scales, surprisingly as little as ∼30 ns. Both the protonated and deprotonated forms of the dasatinib reached the crystallographic binding mode without having any major intermediate state during induction. Availability and implementation The links of the tutorial and technical documents are accessible in the article. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Lawrence M. Jones ◽  
Timothy Sirk ◽  
Eugene Brown

The study of the heat transfer characteristics of nanofluids, i.e. fluids that are suspensions of nanometer size particles, has gained significant attention in the search for new coolants that can effectively service a variety of needs ranging from the increasing heat transfer demands of ever smaller microelectronic devices to mitigating the effects of loss of coolant accidents in nuclear power plants. Experimental data has shown large increases in thermal conductivity and associated increases in the level of critical heat flux in nuclear reactors; however, in some cases the range of the applicability of the experimental results is uncertain and there is a lack of a theory by which this can be resolved. Complicating the theoretical description of heat transfer in nanofluids is the fact that fluids in the vicinity of the nanoparticles are a complex combination of phase transition, interfacial, and transport phenomena. This paper describes a study in which molecular dynamics simulations were used to enhance the understanding of the effect of nanoparticles on heat transfer. The molecular dynamics (MD) simulations presented here model a Lennard-Jones fluid in a channel where the walls are maintained at different temperatures. The heat flux is calculated for a variety of nanoparticle sizes and concentrations. The results are compared to experimental data in order to provide information that will more confidently bound the data and provide information that will guide the development of more comprehensive theories. We also anticipate that this work could contribute to the design of biosensors where suspended molecules are transported through micro- and nano-channels in the presence of heat transfer.


Volume 4 ◽  
2004 ◽  
Author(s):  
Aaron P. Wemhoff ◽  
Van P. Carey

Surface tension determination of liquid-vapor interfaces of polyatomic fluids using traditional methods has shown to be difficult due to the requirement of evaluating complex intermolecular potentials. However, analytical techniques have recently been developed that determine surface tension solely by means of the characteristics of the interfacial region between the bulk liquid and vapor regions. A post-simulation application of the excess free energy density integration (EFEDI) method was used for analysis of the resultant density profile of molecular dynamics (MD) simulations of argon using a simple Lennard-Jones potential and diatomic nitrogen using a two-center Lennard-Jones potential. MD simulations were also run for an approximation of nitrogen using the simple Lennard-Jones potential. In each MD simulation, a liquid film was initialized between vapor regions and NVE-type simulations were run to equilibrium. The simulation domain was divided into bins across the interfacial region for fluid density collection, and the resultant interfacial region density profile was used for surface tension evaluation. Application of the EFEDI method to these MD simulation results exhibited good approximations to surface tension as a function of temperature for both a simple and complex potential.


Sign in / Sign up

Export Citation Format

Share Document