scholarly journals REACTIVE POWDER CONCRETE DENGAN SUMBER SILIKA DARI LIMBAH BAHAN ORGANIK

Teras Jurnal ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 157
Author(s):  
Yulius Rief Alkhaly

<p>Reactive powder concrete (RPC) merupakan varian baru dari beton mutu ultra tingggi (ultra high strength concrete) yang diperkenalkan kepada umum pertama kali pada tahun 1994. Beton modern ini memiliki beberapa keunggulan dibandingkan beton konvensional (normal concrete) atau beton kinerja tinggi (high performance concretes). Penelitian tentang RPC di Indonesi masih sangat terbatas, RPC pertama bermaterial lokal Indonesia dikembangkan tahun 2009, dengan sumber silika berasal dari silica fume. Sebagai bagian dari berbagai penelitian lanjutan tentang RPC, hasil akhir dari riset ini diharapkan dapat menghasilkan RPC yang benar-benar sesuai dengan karakteristik material di Indonesia. Sumber silika yang digunakan berasal dari limbah bahan organik sehingga dapat menekan biaya produksi dan menghasilan green concrete yang dapat mengurangi dampak negatif limbah terhadap lingkungan.</p><p><strong>Kata kunci:</strong> Reactive Powder Concrete, Silika, Limbah Bahan Organik</p>

2012 ◽  
Vol 174-177 ◽  
pp. 1090-1095 ◽  
Author(s):  
Kai Pei Tian ◽  
Yang Ju ◽  
Hong Bin Liu ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The explosive spalling of high-strength concrete due to fire is a problem that has garnered increasingly widespread attention, particularly the explosive spalling of reactive powder concrete (RPC). For years, based on the vapor pressure mechanism, the addition of fibers has been demonstrated to be somewhat effective in protecting against spalling. However, relevant experiments indicate that fibers are not effective for dense concrete, which is a challenge for the simple vapor pressure mechanism in providing spalling resistance for RPC. The authors found that silica fume plays an important role in the explosive spalling of RPC. Thus, four classes of RPCs with different ratios of silica fume were prepared, and the spalling phenomena and the inner temperature distribution during heating were investigated. The results show that silica fume content has a prominent effect on the spalling process of RPC.


1991 ◽  
Vol 18 (5) ◽  
pp. 885-889 ◽  
Author(s):  
J. A. Bickley ◽  
J. Ryell ◽  
C. Rogers ◽  
R. D. Hooton

The 68-storey Scotia Plaza tower in Toronto is an outstanding example of the use of concrete technology to achieve high-performance high-strength concrete. Cementitious hydraulic slag, silica fume, and a superplasticizer were combined with CSA type-10 Portland cement and high-quality aggregates to produce very workable high-strength concrete. During the course of construction, data were published suggesting the possibility of the strength regression of some silica fume concretes after long exposure to low humidity, the determinations being made on standard test cylinders. Tests were, therefore, made at ages of 1 year and 2 years on specimens drilled from columns in the structure. This technical note gives details of the laboratory examination and testing of these specimens. Key words: high strength, slag, silica fume, permeability, rapid chloride permeability, petrographic examination, superplasticizers.


2017 ◽  
Vol 3 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Tae-Hee Lee ◽  
Dal-Hun Yang ◽  
Min-Jae Kwon ◽  
Jang-Ho Jay Kim

2019 ◽  
Vol 4 (6) ◽  
pp. 74-83 ◽  
Author(s):  
Gamal I. K. ◽  
K. M. Elsayed ◽  
Mohamed Hussein Makhlouf ◽  
M. Alaa

Reactive Powder Concrete RPC is comprise of (cement, quartz powder, sand, and superplasticizer) mixture with low water/cement ratio. It has not coarse aggregates and characterized by highly dense matrix, high strength concrete, excellent durability, and economic. This study aims to investigate fresh and hardened properties of locally cast RPC with several available economical materials such as silica fume (SF), fly ash (FA), steel fiber (STF), and glass fiber (GF). Experimental investigation were performed to study the effectiveness of partial replacement of cement by SF or FA to reach ultra-high strength concrete, effect of additional materials STF or GF in order to improve the fracture properties of the RPC mixes, and influence of the treated with normal water as well as with hot water. Fifteen different RPC mixes were cast with 20, 25, 30, and 35% cement replacement by SF, 25% cement replacement by FA, and another proportions taken combination between SF and FA with percentages 15, 20, 25% FA and constant 10% SF. Varying fiber types (steel fiber or glass fiber) added to concrete by different percentages 1, 2, and 3%. Specimens were treated with normal water 25ᵒC and hot water at 60ᵒC and 90ᵒC by 2 mixes with silica fume content 25% of binder and steel fiber content 2% by total volume. Performance of the various mixes is tested by the slump flow, compressive strength, flexure strength, splitting tensile strength, and density. The production of RPC using local materials is successfully get compressive strength of 121 MPa at the age of 28 days at standard conditions and normal water curing 25°C with Silica fume content 25% of binder and steel fiber content 2% by total volume of RPC and water/binder ratio of 0.25.  The results also showed the effect of curing by hot water 60 and 90°C, it is observed that compressive strength increases proportionally with curing temperatures and a compressive strength of 149.1 MPa at 90°C for 1days was obtained.


Author(s):  
Ramanpreet Singh ◽  
Gurprit Singh Bath ◽  
Manjeet Bansal

The framework of bridges, buildings, roads etc. need concrete. The concrete which is being used is not able to fulfil the contemporaneous needs. In India High Strength Concrete (HSC) is preferred for manufacturing practices and at the same time High Performance Concrete is used at high level. The properties of HSC are improved like mechanical and durability are improved by using silica fume in concrete. HSC has made the work of construction company more rewarding to design tall, long and light structures. HSC is helpful in designing buildings with good number of floors, wide area bridges and slim structure. The products like fly-ash, copper slag, silica fume etc. are produced by industries which leads to various environmental problems. The experiment on silica was done which stated that no strength is lost in silica-fume concretes. The experiment comprises four levels of silica-fume at the rate of 0%, 5.5%, 8.0%,9.5% and 11.0% which results high strength concrete.


1994 ◽  
Vol 21 (6) ◽  
pp. 1084-1087 ◽  
Author(s):  
J. A. Bickley ◽  
J. Ryell ◽  
C. Rogers ◽  
R. D. Hooton

The 68-storey Scotia Plaza tower in Toronto is an outstanding example of the use of concrete technology to achieve high-performance, high-strength concrete. Cementitious hydraulic slag, silica fume, and a superplasticizer were combined with CSA type-10 Portland cement and high-quality aggregates to produce very workable high-strength concrete. During the course of construction, data were published suggesting the possibility of the strength regression of test cylinders of some silica fume concretes after long exposure to low humidity. To address this concern, tests were made at ages of 1 year and 2 years on specimens drilled from columns in the structure. These data were published in Volume 18 of this journal. In this note, results of additional tests at 7 years are described and compared with the results of earlier tests. Key words: high strength, slag, silica fume, permeability, rapid chloride permeability, petrographic examination, superplasticisers.


Author(s):  
C. Sukanya ◽  
Mr. R. Surya Prakash

This project is related on the use of Silica fume as a substitution of cement and 100% m- sand as fine aggregate. Concrete is the most widely utilized material in the construction industry and will hold good for years. The credit is attributed to the properties of concrete like excellent strength, durability and less maintenance costs. But in the recent years, the concrete industry is facing a big challenge mainly due to the cement which is a vital component. In order to improve the durability properties many types of special concretes such as High Strength Concrete, High Performance Concrete, Fibre Reinforced Concrete, Self-Compacting Concrete, etc. have been developed. High performance concrete has become an attractive option to Civil Engineers due to the special characteristics like early strength, ease of placement, permeability, mechanical and durability properties. The performance of High strength Concrete (HSC) is enhanced by the addition of admixtures which act as pozzolans as well as fillers, thereby improving the microstructure of the interfacial transition zone making it denser and impermeable. Silica Fume (SF) is a commonly used pozzolanic material owing to its high silicon dioxide content and fineness. This ultra fine property of SF used in concrete to improve its strength and durability.


2018 ◽  
Vol 11 (3) ◽  
pp. 34-38
Author(s):  
Baidaa Khdheer

This research include the study of flexural behavior of reinforced concrete beams with and without addition of super absorbent polymer (SAP) to concrete, two groups of concrete mixture were used; each one have five concrete mixture (Reactive Powder Concrete RPC, Modified Reactive Powder Concrete, Self Compact Concrete SCC, High Strength Concrete HSC and Normal Strength Concrete NSC) four of them with high compressive strength and the last one with normal compressive strength. Group A casting concrete without addition of SAP, group B casting concrete with addition of SAP. Ten beams are molded of (200*300*1700) mm dimension with same steel reinforcement. Flexural tested for all beams was doing and load-deflection relationships of beams with and without SAP were established. Test results had shown that beams casting with addition of SAP (group B) proved to have larger load carrying capacity and llower deflection compared with group A.


Sign in / Sign up

Export Citation Format

Share Document