Geomechanical Modeling and Equivalent Circulating Density (ECD) Management- An Integrated Approach for Successfully Drilling and Managing Losses in Highly Depleted Sands

Author(s):  
A. Chatterjee

A mature field in offshore Sarawak, Malaysia, contains multiple reservoir cycles interbedded with weak shale and coals. Production from these reservoirs caused significant pressure depletion, as well as reduced fracture gradient and a narrower drilling mud weight window. An integrated approach among the multi-disciplinary team was required in the well planning process to maintain the planned drilling and completion costs. An improperly weighted mud may induce wellbore instability in weaker, but normally pressured, formations or mud losses in the heavily depleted reservoirs. Globally, mud losses are considered the most expensive well control operation. Hence, successful drilling and managing losses through depleted sands requires a comprehensive geomechanical modeling and wellbore stability analysis. A field scale geomechanical model was developed and validated using data from exploration and development wells from different phases of drilling in the study area. The stress path factor (SPF), which determines the reduction in fracture gradient with pore pressure depletion is crucial for defining drilling mud windows, is difficult to constrain in the absence of measured formation fracturing data in virgin and depleted reservoirs. A mud loss event in the depleted zone from a recent drilled well and regional information were used to estimate the range of SPF in the study area. Recorded bottom hole pressures from pressure while drilling (PWD) data suggested that the maximum equivalent circulating density (ECD) recorded was close or within the depleted section. The loss event was associated with reduced fracture gradient due to depletion from its pre-depleted range. This paper describes how geomechanical evaluation with effective well drilling practices and fit for purpose-drilling fluids have helped drilling through depleted reservoirs with ECD management. At the end, it shows a comparison of the predrill wellbore stability mud weight estimates with the actual mud weights used to successfully drill and complete the planned wells.

2021 ◽  
Author(s):  
Mohamad Hafiz Abdul Latip ◽  
Avirup Chatterjee ◽  
Amitava Ghosh ◽  
Priveen Raj Santha Moorthy

Abstract Hydrocarbon-bearing reservoirs in a mature field, offshore Sarawak, Malaysia, contains multiple reservoir cycles interbedded with weak shale and coal formations. Years of production from these reservoirs caused significant pressure depletion, as well as reduced fracture gradient and a narrower drilling mud weight window. An improperly weighted mud may induce wellbore instability in weaker, but normally pressured, formations or mud losses in the heavily depleted reservoirs. Globally, mud losses are considered the most expensive well control operation incidents. Earlier drilling campaigns in ths field encountered numerous wellbore instability incidents; hence, a study was conducted to develop an understanding of the drilling issues and assess the stability of the heavily depleted reservoirs. Collaboration between the drilling and geomechanics teams facilitated better understanding of the stability challenges and helped in mitigating risk related to wellbore instability. A field scale geomechanical model was developed and validated using data from exploration and development wells from different phases of drilling in the study area. The stress path factor (SPF), which determines the reduction in fracture gradient with pore pressure depletion is crucial for defining drilling mud windows, is difficult to constrain in the absence of measured formation fracturing data in virgin and depleted reservoirs. A mud loss event in the depleted zone from a recent drilled well and regional information were used to estimate the range of SPF in the study area. Recorded bottom hole pressures from pressure while drilling (PWD) data suggested that the maximum equivalent circulating density (ECD) recorded was close or within the depleted section. The loss event was associated with reduced fracture gradient due to depletion from its pre-depleted range. This paper describes how geomechanical evaluation with effective well drilling practices and fit for purpose-drilling fluids have helped drilling through depleted reservoirs with ECD management. At the end, it shows a comparison of the predrill wellbore stability mud weight estimates with the actual mud weights used to successfully drill and complete the planned wells.


Author(s):  
Petar Mijić ◽  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić

About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids. This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.


2020 ◽  
pp. 54-62
Author(s):  
A. B. Tulubaev ◽  
E. V. Panikarovskii

In the article, we analyze types of drilling mud, which are used to drilling intervals of permafrost rocks; the importance of wellbore stability is noted. Wedescribethemain technologies, which have been being applied in the north of Western Siberia; these technologies are aimed at minimizing the loss wellbore stability due to violation of the temperature conditions in the well. We also analyze hydrocarbon systems, taking into account foreign experience, which is based on prospecting and exploratory drilling of ice deposits in Greenland and Antarctica. The article draws your attention to using synthetic fluids, monoesters and chladones. The difficulties of the existing technology and the disadvantages of the hydrocarbon systems are highlighted. We propose to apply a new cryogenic drilling technology, which consists in the use of synthetic fluorine-containing agents as flushing fluid at low temperatures. The text gives valuable information on composition of the proposed flushing fluid and the prospects of using the technology to prevent complications. Much attention is given to issue of manufacturing the main chemical reagent with the reduction of the generalized production chain of its production from the starting material, it is fluorspar.


2021 ◽  
Vol 881 ◽  
pp. 33-37
Author(s):  
Wei Na Di

The application of nanomaterials in oil and gas fields development has solved many problems and pushed forward the development of petroleum engineering technology. Nanomaterials have also been used in wellbore fluids. Nanomaterials with special properties can play an important role in improving the strength and flexibility of mud cake, reducing friction between the drill string and wellbore and maintaining wellbore stability. Adding nanomaterials into the cement slurry can eliminate gas channeling through excellent zonal isolation and improve the cementing strength of cement stone, thereby facilitating the protection and discovery of reservoirs and enhancing the oil and gas recovery. This paper tracks the application progress of nanomaterials in wellbore fluids in oil and gas fields in recent years, including drilling fluids, cement slurries. Through the tracking and analysis of this paper, it is concluded that the applications of nanomaterials in wellbore fluids in oil and gas fields show a huge potential and can improve the performance of wellbore fluids.


2021 ◽  
Author(s):  
Yakov Dzhalatyan ◽  
Mikhail Charupa ◽  
Aydar Galiev ◽  
Yevgeniy Karpekin ◽  
Sergey Egorov ◽  
...  

Abstract In the presented paper, the object of the study are carbonate rocks of the Riphean and clastic-carbonate rocks of Vendian-Cambrian ages, uncovered by the well drilled at Yurubcheno-Tokhomskoye field. These reservoirs are characterized by extremely low porosity (1-4%) and determining saturation nature and fluid contacts cannot be reliably solved by conventional wireline petrophysical logging. Solutions to these problems are provided by interval testing using wireline formation evaluation testing tool (WFT). However, to obtain quality results from WFT testing it is important to identify porous intervals first by using advanced wireline logging services which are sensitive to porosity and fractures. In order to select the optimal WFT toolstring combination and to prospective testing intervals, advanced petrophysical wireline logging suit ran first. Porous reservoirs were identified from density, neutron and nuclear magnetic resonance evaluation. Saturation evaluated through dielectric and induction-based resistivity logging. In fracture-vug type reservoir, the main inflow of formation fluid into the well is provided from fractures, so it was very important to allocate conductive fractures to plan test intervals for WFT accordingly. based on imagers evaluation, fractures and faults were visualized; using Stoneley's wave conductive fractures, not clogged with drilling mud solids were identified; borehole acoustic reflection survey was used to segregate large fractures that propagated in the reservoir; During WFT logging, a total of 23 intervals were tested, for 8 of which reservoir fluid inflow was achieved, in all others, mainly with low porosity or single non-conductive fracture, the inflow was not achieved or was insignificant. According to the results of WFT testing, the nature of saturation for clastic-carbonate sediments of Vendian age was determined. Inflow of formation fluid (oil and water) from Riphean fractured reservoirs was achieved from 6 intervals, with identified fractures according to described above advanced logging suit. In addition, pressure transient analysis was performed, to measure the formation pressure, define pressure gradient curves and assess the fluids contact level with high confidence, for the first time for this field.


2021 ◽  
Author(s):  
Chee Phuat Tan ◽  
Wan Nur Safawati Wan Mohd Zainudin ◽  
M Solehuddin Razak ◽  
Siti Shahara Zakaria ◽  
Thanavathy Patma Nesan ◽  
...  

Abstract Drilling in permeable formations, especially depleted reservoirs, can particularly benefit from simultaneous wellbore shielding and strengthening functionalities of drilling mud compounds. The ability to generate simultaneous wellbore shielding and strengthening in reservoirs has potential to widen stable mud weight windows to drill such reservoirs without the need to switch from wellbore strengthening compound to wellbore shielding compound, and vice-versa. Wellbore shielding and strengthening experiments were conducted on three outcrop sandstones with three mud compounds. The wellbore shielding stage was conducted by increasing the confining and borehole pressures in 4-5 steps until both reached target pressures. CT scan images demonstrate consistency of the filtration rates with observed CT scanned mud cakes which are dependent on the sandstone pore size and mud compound particle size distributions. In wellbore strengthening stage, the borehole pressure was increased until fracture was initiated, which was detected via borehole pressure trend and CT scan imaging. The fractures generated were observed to be plugged by mud filter solids which are visible in the CT scan images. The extent of observed fracture solid plugging varies with rock elastic properties, fracture width and mud compound particle size distribution. Based on the laboratory test data, fracture gradient enhancement concept was developed for the mud compounds. In addition, the data obtained and observations from the tests were used to develop optimal empirical design criteria and guidelines to achieve dual wellbore strengthening and shielding performance of the mud compounds. The design criteria were validated on a well which was treated with one of the mud compounds based on its mud loss events during drilling and running casing.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2021 ◽  
Author(s):  
Raymond Saragi ◽  
Mohammad Husien ◽  
Dalia Salim Abdullah ◽  
Ryan McLaughlin ◽  
Ian Patey ◽  
...  

Abstract A study was carried out to examine formation damage mechanisms caused by drilling fluids in tight reservoirs in several onshore oil fields in Abu Dhabi. Three phases of compatibility corefloods were carried out to identify potential to improve hydrocarbon recovery and examine reformulated/alternate drilling muds and treatment fluids. Interpretation was aided by novel Nano-CT quantifications and visualisations. The first phase examined the current drilling muds and showed inconsistent filtrate loss control alongside high levels of permeability alteration. These alterations were caused by retention of drilling mud constituents in the near-wellbore and incomplete clean-up of drilling mud-cakes. Based upon these results, reformulated and alternate drilling muds were examined in Phase 2, and there was a positive impact upon both filtrate loss and permeability, although the Nano-CT quantifications and visualisations showed that drilling mud constituents were still having an impact upon permeability. Candidate treatment fluids were examined in Phase 3, with all having a positive impact and the best performance coming from 15% HCl and an enzyme-based treatment. The interpretative tools showed that these treatments had removed drilling mud-cakes, created wormholes, and bypassed the areas where constituents were retained. The compatibility corefloods on tight reservoir core, alongside high-resolution quantifications and visualisations, therefore identified damaging mechanisms, helped identify potential to improve hydrocarbon recovery, and identify treatment fluid options which could be used in the fields.


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


Sign in / Sign up

Export Citation Format

Share Document