Biosurfactant Addition into Solvent Extraction Process of Oily Contaminated Solid Waste

Author(s):  
L. Fitriyani

Solvent extraction has been used in industry or many purposes for years, including to recover oil at contaminated soil. Certain solvents and temperature ranges have been chosen to increase the oil recovery rate of extraction process. The Study observed the implementation of biosurfactant at the extraction process to perform reduction of total petroleum hydrocarbon (TPH) concentration of oily contaminated soil. In order to optimize TPH removal, extraction were conducted for multiple stages. Biosurfactant extraction result were also compared to solvent extraction process which acetone and toluene have been selected to extract oil content from contaminated soil by using solvent extraction process. The combination treatments with biosurfactant were also involving variety of centrifugation process with 1000 rpm (1570 g) operational speed. Duration of treatment process was 10 minutes with some variations of solid to solvent ratio. During the experiments comparison result between varies treatment process provides alternatives to treat oily contaminated soil by using extraction process. Compatibility among solvents, biosurfactants, types of oily contaminated solid waste were also observed to seek possibility on large scale of treatment process implementation both insitu at the contaminated site and exsitu at integrated waste treatment facility.

REAKTOR ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 84-88
Author(s):  
Lely Fitriyani ◽  
Edwan Karadena ◽  
Sukandar Sukandar

Solvent extraction has been used as a method to wash oil content of oily contaminated soil in industry for years. Some solvents and temperature ranges has been chosen to increase the oil recovery rate of extraction process, however only few studies reported that it has been able to reach remaining Total Petroleum Hydrocarbon (TPH) less than 0.5% in less than 30 minutes. During the experiments, acetone and toluene chosen to extract oil content from contaminated soil by using solvent extraction process. Temperature selected were between 24°C up to 70°C. Mixing apparatus which has been utilized was centrifugation machine with 1000 rpm (1570 g) operational speed. Duration of treatment process was 10 minutes with some variations of solid to solvent ratio. During the experiments, it was observed that by using toluene and acetone as solvents, the optimum Total Petroleum Hydrocarbon (TPH) removal obtained at temperature 50°C. In the other hand, optimum solid to solvent ratio toluene ratio was 1:6. As a solvent acetone observed capable to reduce TPH content until below 0.5% as threshold limit for TPH of contaminated soil regulated by environmental regulation in Indonesia. During the experiments it was also observed the dependency of solid concentration (Cs) with dissociation coefficient (KD). In the other hand, heavy metal at the remaining extracted soil after soil washing was observed available in safe concentration to be discharged to the environment base on regulation in Indonesia. Keywords: solvent extraction, soil washing, contaminated soil, TPH, centrifugation, oil sludge, acetone, toluene, solid treatment.


1997 ◽  
Vol 47 (10) ◽  
pp. 1119-1124 ◽  
Author(s):  
Mark C. Meckes ◽  
Joseph Tillman ◽  
Lauren Drees ◽  
Eric Saylor

2018 ◽  
pp. 1-7 ◽  
Author(s):  
O. S. Apori ◽  
E. Hanyabui ◽  
Y. J. Asiamah

Copper is a naturally occurring trace element present in all environmental media, including soil, sediment, air and water. It is an essential micronutrient critical for cell function, playing a vital role in processes. Copper contamination to agricultural soils is of great concern due to its wide and continuous use in agriculture and horticulture as fertilizers and fungicide. Copper contaminated soil is mainly attributed to agriculture activities such as continuous application of copper-based fungicides and pesticides application. A minireview was carried out using peer-reviewed articles published from 2000 to 2017, which methods of remediating copper soil. The AGORA and Google Scholar databases were used to conduct the search for articles using the terms copper and phytoremediation, Copper and Biological remediation, Copper and soil washing OR physical methods. Following these searches, 19 journal articles out of a total of 191 articles satisfied criteria for inclusion and were used in the final systematic review. The study showed that remediation technology for copper contaminated soil is divided into physical, chemical and biological categories. Physical methods are laborious and costly but can be applied to highly contaminated site; chemical methods have high efficiency and effective to remove the copper, but mostly popularized in a large scale; bioremediation methods including phytoremediation and microbial remediation are appropriate for large areas of soil contaminated by low concentrations of copper. The bioremediation methods are economical, eco-friendly but time consuming.


2021 ◽  
Vol 43 (2) ◽  
pp. 117-124
Author(s):  
Lely Fitriyani ◽  
Edwan Kardena ◽  
Sukandar ◽  
Qomarudin Helmy

Objectives : Solvent extraction is a process in which not only enable to reduce oil contaminant from soil residue, but also capable to recover oil from soil matrix of oily contaminated soil which has opportunity to be reutilized. Optimization process has been simulated by previous studies related to type and dosage of solvents, variances of temperature, additional of surfactants, and other related parameters to increase oil removal from oily contaminated soil. This study seeks an approach of optimization for solvent extraction process to oily contaminated solid waste by conducting statistical analysis into laboratory experimentation from perspective of Total Petroleum Hydrocarbon (TPH) removal.Method : Biosurfactant became single extractors for multistage extraction process and also combined with other solvents which are acetone and toluene. Mixing method that utilized during the study was combination between horizontal shaking at 150 rpm in 15 min duration and centrifugation force at 1,570 g in 10 min duration. Statistical analysis were conducted to seek its multiple regression.Result : Study describing biosurfactant performance single extractor by using multistage extraction process achieve 77% TPH removal, while combination of biosurfactant and solvent extraction by using toluene and acetone also capable to increase TPH removal 7% higher from original performance of both toluene and acetone at solvent extraction.Conclusion : Surfactant and solvents combination is promising to improve TPH removal, while statistics analysis that implemented to observed extraction process has possibility to be used for engineering higher efficiency of extraction process.


Author(s):  
D.Zh. Akhmed-Zaki ◽  
T.S. Imankulov ◽  
B. Matkerim ◽  
B.S. Daribayev ◽  
K.A. Aidarov ◽  
...  

2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


Sign in / Sign up

Export Citation Format

Share Document