LARGE-SCALE SIMULATION OF OIL RECOVERY BY SURFACTANT-POLYMER FLOODING

Author(s):  
D.Zh. Akhmed-Zaki ◽  
T.S. Imankulov ◽  
B. Matkerim ◽  
B.S. Daribayev ◽  
K.A. Aidarov ◽  
...  
2016 ◽  
Vol 719 ◽  
pp. 74-78
Author(s):  
Chao Tang ◽  
Jiao Jiao Guan

Polymer flooding has became one of the most important oil recovery technologies with Chinese oilfields coming into tertiary recovery, which lays a solid foundation for high and stable yields in oilfields. But with it’s large-scale industrial production, polymer flooding technology also brings difficulties for the disposal and treatment of polymer flooding wastewater. Compared with conventional water flooding wastewater technology, polymer flooding wastewater not only contains oil but also lots of polymer. “Old three sets” process cannot meet the national discharge standard or the injection water quality standard. Relied on HeNan oilfield united station, this paper studied on the treatment of polymer flooding wastewater, a kind of efficient flocculant was selected for the treatment of polymer flooding wastewater and a set of reasonable technological process was recommended, making the wastewater after disposal meet the injection water quality standard.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chen Sun ◽  
Hu Guo ◽  
Yiqiang Li ◽  
Kaoping Song

Recently, there are increasing interests in chemical enhanced oil recovery (EOR) especially surfactant-polymer (SP) flooding. Although alkali-surfactant-polymer (ASP) flooding can make an incremental oil recovery factor (IORF) of 18% original oil in place (OOIP) according to large-scale field tests in Daqing, the complex antiscaling and emulsion breaking technology as well as potential environment influence makes some people turn to alkali-free SP flooding. With the benefit of high IORF in laboratory and no scaling issue to worry, SP flooding is theoretically better than ASP flooding when high quality surfactant is available. Many SP flooding field tests have been conducted in China, where the largest chemical flooding application is reported. 10 typical large-scale SP flooding field tests were critically reviewed to help understand the benefit and challenge of SP flooding in low oil price era. Among these 10 field tests, only one is conducted in Daqing Oilfield, although ASP flooding has entered the commercial application stage since 2014. 2 SP tests are conducted in Shengli Oilfield. Both technical and economic parameters are used to evaluate these tests. 2 of these ten tests are very successful; the others were either technically or economically unsuccessful. Although laboratory tests showed that SP flooding can attain IORF of more than 15%, the average predicted IORF for these 10 field tests was 12% OOIP. Only two SP flooding tests in (SP 1 in Liaohe and SP 7 in Shengli) were reported actual IORF higher than 15% OOIP. The field test in Shengli was so successful that many enlarged field tests and industrial applications were carried out, which finally lead to a commercial application of SP flooding in 2008. However, other SP projects are not documented except two (SP7 and SP8). SP flooding tests in low permeability reservoirs were not successful due to high surfactant adsorption. It seems that SP flooding is not cost competitive as polymer flooding and ASP flooding if judged by utility factor (UF) and EOR cost. Even the most technically and economically successful SP1 has a much higher cost than polymer flooding and ASP flooding, SP flooding is thus not cost competitive as previously expected. The cost of SP flooding can be as high as ASP flooding, which indicates the importance of alkali. How to reduce surfactant adsorption in SP flooding is very important to cost reduction. It is high time to reevaluate the potential and suitable reservoir conditions for SP flooding. The necessity of surfactant to get ultra-low interfacial tension for EOR remains further investigation. This paper provides the petroleum industry with hard-to-get valuable information.


1982 ◽  
Vol 22 (01) ◽  
pp. 69-78
Author(s):  
H. Kazemi ◽  
D.J. MacMillan

Abstract The work presented in this paper was undertaken to study the effect of pattern configuration on oil recovery by the Maraflood oil-recovery process. The patterns studied are the five-spot and the 4 × 1 line drive. These patterns are obtained by placing infill wells in an existing 10-acre (40 469-m2) waterflooded five-spot pattern to obtain the 2.5-acre (10 117-m2) patterns. The number of infill wells is the same for both the new five-spot and new line-drive configurations and is about three times the number of existing wells. Both patterns have been used successfully in field applications by Marathon before this study. For instance, a line-drive pattern was used in Project 119-R and a five-spot pattern was used in Project 219-R. This work shows that the line drive produces more tertiary oil than the five-spot under otherwise identical reservoir conditions. Breakthrough times and oil rates for line-drive production wells are nearly the same. Meanwhile, five-spot production wells have vastly differing oil breakthrough times and oil rates. Both of the latter effects result from a nonuniform distribution of waterflood residual oil saturation in the field. Our study also shows that if producing wells in each line-drive row are connected by a perfect vertical fracture and if the same is true of the injection wells, the line-drive efficiency will improve very little. Introduction The Maraflood oil-recovery process is a viable enhanced oil-recovery technique. An appraisal of this process and other surfactant-enhanced oil-recovery schemes was reported by Gogarty. Three significant field tests of the Maraflood process were reported by Earlougher et al. In addition, a large-scale field application of this process was presented recently by Howell et al. in field applications of the Maraflood process, both line-drive and five-spot configurations have been used. In our field experience, an existing five-spot waterflood pattern is convened to another five-spot or 4 × 1 line-drive configuration by adding infill wells. The new five-spot or line-drive pattern has an area-per-well spacing of one-fourth of the original waterflood spacing. In practice, the number of infill wells required for both cases is somewhat greater than three times the number of existing wells. As the total number of wells increases, this ratio approaches the theoretical limit of three. In addition to the preceding arrangements of infill wells, many others are possible. In some arrangements, fewer infill wells are required than in our five-spot and 4 × 1 line drive. In such cases, the area per well increases, which generally causes these problems:required injectivity per injection well increases and may not be attainable because of the high viscosity of the injected fluids andthe breakthrough time is delayed. As an example, consider the case where no infill wells are drilled. In addition to the two problems just listed, the micellar/polymer flooding scheme will sweep only those regions that already have been swept well by the waterflood. The regions left unswept by the waterflood also will be left essentially unswept by the micellar/polymer flood. This means that a substantial amount of oil is left in place. Therefore, these types of undesired patterns were not considered in this study. Patterns with more infill wells than those in this study were not considered because of current economic limitations. Because of the likelihood of economic and technical merits, we also considered the placement of long vertical fractures to connect existing waterflood wells in place of infill wells. The fractures were arranged to form a more effective line drive. We emphasize that the patterns studied in this paper are those usually used in micellar/polymer flooding applications. Muskat has reported breakthrough waterflood sweep efficiencies of 72% and 88% for five-spot and 4 × 1 line drive patterns when the mobility ratio is unity. Muskat's results are for ideal plug flow displacement of red water by blue water in a perfectly homogeneous reservoir. SPEJ P. 69^


Author(s):  
Vitor Hugo de Sousa Ferreira ◽  
Rosangela B. Z. L. Moreno

Polymer flooding dates from the 1960s. Early applications targeted onshore medium-to-heavy oils up to 100 cP, with limited reservoir temperature and water formation salinity. The number of implemented polymer flooding projects followed oil prices. Since its early days, polymer flooding had overcome many technical obstacles. Advances in polymer manufacturing technology, cost reduction and the use of horizontal wells have pushed polymer flooding as a feasible EOR method. A better understanding of the physical phenomena associated with polymer flow through porous media and technology advancement have extended polymer flooding applications to more viscous oil, higher salinity, and temperature level, as well as to offshore prospects. Meaningful advantages of polymer flooding over conventional methods are consolidated in the literature, such as oil recovery anticipation, incremental oil recovery and reduced volumes of injected and produced water to reach a target recovery factor. Despite all technological advances, polymer flooding needs to be tailored for the specific conditions of the target reservoir. Collect and integrate laboratory, simulation, and field information are essential for a successful polymer flooding application. This paper aims to correlate critical information to the various stages necessary for polymer flooding evaluation and production forecast. First, successfully implemented field cases allow the establishment of ranges for the method application. Once the applicability of polymer flooding is certified, the polymer solution to be injected is designed according to the reservoir characteristics and target conditions. Laboratory tests are performed to determine phase mobilities, polymer retention, and polymer degradation. These parameters are assessed through different experiments, and normalized variables provide data integration. Once the required parameters are determined, it is possible to build a base simulation model. History matching this base model to the laboratory data certifies its validity. An upsized analysis of this model is required to include some degradation phenomena. The 1D laboratory model is extended to a 3D model that incorporates permo-porosity distributions to analyze well characteristics in their radius of influence. The final step is large scale simulation and production forecast. Data integration along each stage and among then all allow the tailoring of the polymer flooding to EOR. The use of normalized parameters to evaluate the results is useful for analysis at different scales, from the laboratory to the reservoir. The proposed workflow can contribute to the design, planning, evaluation, and implementation of polymer flooding in a target field.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1950 ◽  
Author(s):  
Hong He ◽  
Jingyu Fu ◽  
Baofeng Hou ◽  
Fuqing Yuan ◽  
Lanlei Guo ◽  
...  

The heterogeneous phase combination flooding (HPCF) system which is composed of a branched-preformed particle gel (B-PPG), polymer, and surfactant has been proposed to enhance oil recovery after polymer flooding in heterogeneous reservoirs by mobility control and reducing oil–water interfacial tension. However, the high cost of chemicals can make this process economically challenging in an era of low oil prices. Thus, in an era of low oil prices, it is becoming even more essential to optimize the heterogeneous phase combination flooding design. In order to optimize the HPCF process, the injection strategy has been designed such that the incremental oil recovery can be maximized using the corresponding combination of the B-PPG, polymer, and surfactant, thereby ensuring a more economically-viable recovery process. Different HPCF injection strategies including simultaneous injection and alternation injection were investigated by conducting parallel sand pack flooding experiments and large-scale plate sand pack flooding experiments. Results show that based on the flow rate ratio, the pressure rising area and the incremental oil recovery, no matter whether the injection strategy is simultaneous injection or alternation injection of HPCF, the HPCF can significantly block high permeability zone, increase the sweep efficiency and oil displacement efficiency, and effectively improve oil recovery. Compared with the simultaneous injection mode, the alternation injection of HPCF can show better sweep efficiency and oil displacement efficiency. Moreover, when the slug of HPCF and polymer/surfactant with the equivalent economical cost is injected by alternation injection mode, as the alternating cycle increases, the incremental oil recovery increases. The remaining oil distribution at different flooding stages investigated by conducting large-scale plate sand pack flooding experiments shows that alternation injection of HPCF can recover more remaining oil in the low permeability zone than simultaneous injection. Hence, these findings could provide the guidance for developing the injection strategy of HPCF to further enhance oil recovery after polymer flooding in heterogeneous reservoirs in the era of low oil prices.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Ruissein Mahon ◽  
Gbenga Oluyemi ◽  
Babs Oyeneyin ◽  
Yakubu Balogun

Abstract Polymer flooding is a mature chemical enhanced oil recovery method employed in oilfields at pilot testing and field scales. Although results from these applications empirically demonstrate the higher displacement efficiency of polymer flooding over waterflooding operations, the fact remains that not all the oil will be recovered. Thus, continued research attention is needed to further understand the displacement flow mechanism of the immiscible process and the rock–fluid interaction propagated by the multiphase flow during polymer flooding operations. In this study, displacement sequence experiments were conducted to investigate the viscosifying effect of polymer solutions on oil recovery in sandpack systems. The history matching technique was employed to estimate relative permeability, fractional flow and saturation profile through the implementation of a Corey-type function. Experimental results showed that in the case of the motor oil being the displaced fluid, the XG 2500 ppm polymer achieved a 47.0% increase in oil recovery compared with the waterflood case, while the XG 1000 ppm polymer achieved a 38.6% increase in oil recovery compared with the waterflood case. Testing with the motor oil being the displaced fluid, the viscosity ratio was 136 for the waterflood case, 18 for the polymer flood case with XG 1000 ppm polymer and 9 for the polymer flood case with XG 2500 ppm polymer. Findings also revealed that for the waterflood cases, the porous media exhibited oil-wet characteristics, while the polymer flood cases demonstrated water-wet characteristics. This paper provides theoretical support for the application of polymer to improve oil recovery by providing insights into the mechanism behind oil displacement. Graphic abstract Highlights The difference in shape of relative permeability curves are indicative of the effect of mobility control of each polymer concentration. The water-oil systems exhibited oil-wet characteristics, while the polymer-oil systems demonstrated water-wet characteristics. A large contrast in displacing and displaced fluid viscosities led to viscous fingering and early water breakthrough.


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document