scholarly journals DILTIAZEM HCL MICROCAPSULES USING ETHYL CELLULOSE ETHER DERIVATIVE POLYMER AS RELEASE RETARDING AGENT: IN-VITRO CHAPTER

Author(s):  
KifayatUllah Shah ◽  
Gul Majid Khan ◽  
ShefaatUllah Shah ◽  
Asim Ur Rehman ◽  
Abdul Wahab ◽  
...  

This study presents sustained releasemicroencapsulation of Diltiazem HCL. Its in-vitro dissolution study in phosphate buffer pH 7.4 as dissolution medium and in vivo behaviour in animal subjects. The microcapsules were prepared using polymers Ethocel 7P and Ethocel 7FP at two different drug to polymer (D: P) ratios i.e. 1:5 and 1:10 and the effect of concentration was observed on drug release behaviour. The prepared microcapsules were evaluated for different physical characteristics i.e. Bulk density, Tap density, Compressibility index, Hausner’s ratio and Angle of repose. Characterization of the developed microcapsules was carried out using Differential Scanning Calorimetery and Fourier Transform Infrared Spectroscopy while Scanning Electron Microscopy was performed to observe the morphology of the microcapsules. Model dependent and in dependent approaches were used to find out the drug transport mechanism and to compare the drug release profiles with standard formulation respectively. All the formulations show anomalous, non-Fickian diffusion mechanism and the data was best fitted in Korsmeyer’sPeppas equation. While carrying out in vivo studies, simple and rapid HPLC methods were developed which revealed optimum serum concentration (Cmax) levels for the developed microcapsules predicting least chances of side or adverse effects.

Author(s):  
Mallikarjuna M. ◽  
Ramakrishna A.

In the present investigation planned to study the less explored sterculia gum as matrix carrier of Budesonide to colon. Developed the formulations from B1 to B4 contains alone sterculia gum and its proportion increased gradually in the formulation. The formulations B5 to B10 contain the sterculia gum in combination with Eudragit S 100 and the hydrophilic, hydrophobic polymer. The budesonide core in coat matrix tablets was prepared by direct compression method. The powder bed of the formulations is evaluated for pre compressional characteristics like bulk density, tapped density, compressibility index and angle of repose. The compressed budesonide core in coat matrix tablets were evaluated for post compressional characteristics like thickness, diameter, hardness, disintegration, friability and to understand the drug release pattern and to correlate the in vivo condition, the in vitro dissolution performed in three different gastro intestinal pH at 1.2, pH 7.4 and pH 6.8 with and without 4% rat cecal content. The in vitro dissolution results of formulations ascertain that sterculia gum alone in formulation uncontrolled the drug release in first 5 hrs and carried lesser amount of drug to colon. The formulations B8 in the first 5 hours released 4.3% and carried the larger amount of drug to colon and in absence of rat cecal content released 90% and in presences of 4% rat cecal content released 99% of drug, indicating the sterculia gum undergoes enzymatic degradation and this formulation is considered as potential in targeting the budesonide to colon in the local ulcerative colitis


Author(s):  
Vijaya Kumar B ◽  
Prasad G ◽  
Ganesh B ◽  
Swathi C ◽  
Rashmi A ◽  
...  

The objective of the present research was to develop a Bilayer tablet of guaifenesin (GBT) using superdisintegrant MCC and sodium starch glycolate for the fast release layer and metalose 90 SH and carbopol 934 for the sustaining layer. The guaifenesin SR granules of different formulation were evaluated for bulk density, tapped density, angle of repose, Carr’s index and Hausners ratio and results were found to be 0.460 ± 0.12 to 0.515 ± 0.03 gm/cm3 , 0.550 ±0.03 to 0.590 ±0.04 gm/cm3 , 19 ±0.01 to 26 ± 0.23, 13.72 ± 0.03 to 19.56 ± 0.04 & 1.137 to 1.196, respectively. The prepared bilayer tablets were evaluated for weight variation, hardness, friability, drug content and in vitro drug release. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 h from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. Stability studies conducted for optimized formulation did not show any change in physical appearance, drug content, matrix integrity and in vitro drug release. The results of the present study clearly indicated that GBT was a stable dosage form and a promising potential of the guaifenesin bilayer system as an alternative to the conventional dosage forms


2021 ◽  
Author(s):  
Barkat Ali Khan ◽  
Yasmin Asmat ◽  
Tariq Hayat Khan ◽  
Mughal Qayum ◽  
Sultan Muhammad Alshahrani ◽  
...  

Abstract Cutaneous Leishmaniasis (CL) is the most common type of Leishmaniasis which annually affects 1.5 million people worldwide. About 90% of cases are reported from countries such as Iran, Afghanistan, Pakistan, Iraq, and Saudi Arabia. The purpose of the present study was to fabricate transdermal patches of Nigella sativa (NS), characterize and to check its in vitro in vivo anti-Lieshmanial activity. Hydroalcohlic extract was analyzed for preliminary phytochemicals. Five formulations of transdermal patches (NS1, NS2, NS3, NS4 and NS5) were prepared by solvent evaporation method. The optimized formulation NS5 was characterized for FTIR, smoothness, brittleness, clarity, thickness, folding endurance, uniformity of weight, percent moisture content, in-vitro drug release, release kinetics, ex vivo drug permeation and in-vitro anti-Lieshmanial activity. In vivo anti-Lieshmanial activity was assessed in 30 patients (n = 30) suffering from CL. The FTIR studies showed no incompatibility among the active extract and polymers. In vitro anti-Lieshmanial assay was 194.6 ± 1.88 % as compared to standard drug (p > 0.05) and in vivo anti-Lieshmanial activity was 75 %. The drug release after 24 hours was 87.0 ± 0.94% in NS5 which showed non-Fickian diffusion mechanism while drug permeation across rabbit skin after 24 hours was up to 80.0 ± 0.91%. The results concluded that problems related to the medications parenterally used for Lieshmanial treatment can be managed by applying extract of Nigella sativa seeds in the form of transdermal patch.


2018 ◽  
Vol 10 (6) ◽  
pp. 168
Author(s):  
Prasanta Kumar Mohapatra ◽  
Ch. Prathibha ◽  
Vivek Tomer ◽  
Mandeep Kumar Gupta ◽  
Satyajit Sahoo

Objective: The current study was projected to prepare a losartan potassium gastroretentive drug delivery system (GRDDS) of floating tablets was planned to enhance the gastric residence time, thus prolong the drug release.Methods: Effervescent floating matrix tablets of losartan potassium were prepared by direct compression technique using polymers like HPMC k4m, guar gum, and gum karaya, with lubricants magnesium stearate and talc. In the present study, sodium bicarbonate was incorporated as a gas generating agent. Total nine formulations were designed and evaluated for pre-compression parameters known as the angle of repose, bulk density, tapped density, Hausner’s ratio, compressibility index, and post-compression parameters are uniformity of weight, hardness, and drug content percentage, variability, in vitro buoyancy, dissolution studies, and Fourier transform infrared spectroscopy (FTIR).Results: An in vitro dissolution study was carried out by using buffer pH 1.2. From in vitro dissolution studies, it has been found that an increase in polymer concentration diminishes the drug release profile. The in vitro drug release percentage from F4-F9 formulations ranged from 60.28%-98.66% at the closing of 12 h and buoyancy found over 12 h.Conclusion: The in vitro drug release from F1-F3 and F7-F9 followed zero-order, F4 followed Higuchi order, F5 and F6 followed Hixon-Crowell release kinetics. The drug release mechanism was set up to be F1-F8 non-Fickian (anomalous behavior) and F9 having Fickian diffusion type.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 635
Author(s):  
Ding Li ◽  
Menglong Wang ◽  
Wen-Liang Song ◽  
Deng-Guang Yu ◽  
Sim Wan Annie Bligh

A side-by-side electrospinning process characterized by a home-made eccentric spinneret was established to produce the Janus beads-on-a-string products. In this study, ketoprofen (KET) and methylene blue (MB) were used as model drugs, which loaded in Janus beads-on-a-string products, in which polyvinylpyrrolidone K90 (PVP K90) and ethyl cellulose (EC) were exploited as the polymer matrices. From SEM images, distinct nanofibers and microparticles in the Janus beads-on-a-string structures could be observed clearly. X-ray diffraction demonstrated that all crystalline drugs loaded in Janus beads-on-a-string products were transferred into the amorphous state. ATR-FTIR revealed that the components of prepared Janus nanostructures were compatibility. In vitro dissolution tests showed that Janus beads-on-a-string products could provide typical double drugs controlled-release profiles, which provided a faster immediate release of MB and a slower sustained release of KET than the electrospun Janus nanofibers. Drug releases from the Janus beads-on-a-string products were controlled through a combination of erosion mechanism (linear MB-PVP sides) and a typical Fickian diffusion mechanism (bead KET-EC sides). This work developed a brand-new approach for the preparation of the Janus beads-on-a-string nanostructures using side-by-side electrospinning, and also provided a fresh idea for double drugs controlled release and the potential combined therapy.


2021 ◽  
Vol 62 (2) ◽  
pp. 144-162
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Introduction: The drawbacks assosiated with oral administration of drugscan be controlled or minimized by gastro retentive formulations that remain buoyant within the stomach for an extended time by providing prolonged gastric retention and releasethe drug in an exceedingly extended manner thereby improving bioavailability. The current research was to develop and optimize Domperidone and Famotidine floating tablets with extended release by Quality by Design approach. Method: Based on QTPP (Quality Target Product Profile), CQAs (Critical Quality Attributes)wereidentified. Risk analysis by the evaluation of formulation and process parameters showed that optimizing the levels of polymers could reduce high risk to achieve the target profile. A 23factor experimental design with midpoints was selected for statistical analysis and optimization. Results: HPMC K100 and Carbopol 934P had a positive effect while ethyl cellulose demonstrated a negative effect on the selected responses. Drug release kinetics followed the first-order release with Higuchi diffusion and Fickian diffusion. Optimized formula satisfying all the required parameters was selected and evaluated. The predicted response values were in close agreement with experimental response values. Abdominal X-ray imaging after oral administration of the tablets on a healthy rabbit’s stomach confirmed the extended floating behavior with shorter lag time. In vivo, pharmacokinetic studies in rabbits revealed that the optimized formulation exhibited prolonged drug release with enhanced Cmax, tmax, AUCo-t, and t1/2 of an optimized product when compared to the marketed product. Conclusions: It has been concluded that the application of Quality by Design in the formulation and optimization reduced the number of trials to produce a cost-effective formula.


2021 ◽  
Vol 16 ◽  
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Background: The present research aimed to develop and optimize extended-release floating tablets of Sacubitril and Valsartan through Quality by Design (QbD) approach. Risk analysis by formulation assessment and process parameters showed that optimizing the levels of the polymer will minimize high risk to meet the target profile. A two (2) level three (3) full factorial experimental design along with midpoints was carefully chosen for optimization and statistical analysis. Based on the literature, the independent and dependent variables were selected. Results: HPMC K100, Carbopol 934P had a positive effect, whereas Ethylcellulose had a negative effect on Floating time, drug release at 2 h, drug release at 12 h and, 50% responses. Drug release kinetics followed the first-order release with Higuchi and Fickian diffusion. Contour and overlay plots were utilized for an assortment of design space and optimized formula. ANOVA results of all the factors exhibited significance at p<0.05. Abdominal X-ray imaging of the optimized tablets on healthy rabbit’s stomach confirmed the floating behavior for more than 12 h. In vivo pharmacokinetic studies in rabbits showed that the optimized formulation exhibited prolonged and extended drug release with improved Cmax, tmax, AUCo-t, and t1/2 of test product when compared to marketed product. IVIVC model was developed by using dissolution data of in vitro and pharmacokinetics data of in-vivo by de-convolution method (Wagner-Nelson method). Conclusion: The Quality by Design implementation in the formulation and optimization abridged the number of trials to produce a cost-effective formula. In vivo studies confirmed that the formula was successfully developed with extended floating time (12 h) and drug release by risk analysis and experimental designs. Level A correlation was observed which confirmed a good correlation between in vitro and in vivo data.


Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


Author(s):  
Pratik Swarup Das ◽  
Puja Saha

Objective: In present work was designed to develop suitable transdermal matrix patches of Phenformin hydrochloride using various hydrophilic (HPMC) and hydrophobic (EUDRAGID) polymers as matrix formers.Methods: Transdermal patches containing Phenformin hydrochloride were prepared by the solvent casting evaporation technique.Results: Revealed that prepared patches showed good physical characteristics, no drug-polymer interaction and no skin irritation was observed. The in vitro release study revealed that F3 formulation showed maximum release in 24 h. Formulation F3 was subjected for accelerated stability studies. The F3 formulation was found to be stable as there was no drastic change in the Physico-chemical properties of the patches, which was also confirmed by FTIR.Conclusion: Thus conclusion can be made that stable transdermal patches of Phenformin hydrochloride has been developed. F1, F2, F3, F4 formulations showed highest cumulative percentage drug release of 98.13%, 95.50%, 98.65%, 97.21% were obtained during in vitro drug release studies after 24 h. The release of Phenformin hydrochloride appears to be dependent on lipophilicity of the matrix. Moderately lipophillic matrices showed best release. The predominant release mechanism of drug through the fabricated matrices was believed to be by diffusion mechanism. Based upon the in vitro dissolution data the F3 formulation was concluded as optimized formulation.


Sign in / Sign up

Export Citation Format

Share Document