ORIENTASI EKONOMI DALAM SISTEM PENGELOLAAN SAMPAH DOMESTIK TERPADU DI INDONESIA

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suprapto Suprapto

Environmental life cycle assessment on Integrated solid waste management hasdeveloped rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following issues are discussed. (1) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (2) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. (3) Time: emissions from landfills will continue for a long time.An important issue to resolve is the length of time emissions from the landfill should be considered. Effective schemes need the flexibility to design, adapt and operate systems in ways which best meet current social, economic and environmental conditions. These are likely to change over time and vary by geography. The need for consistency in quality and quantity of recycled materials, compost or energy, the need to support a range of disposaloptions and the benefit of economies of scale, all suggest that integrated waste management should be organized on a large-scale, regional basis. Any scheme incorporating recycling, composting or waste-to-energy technologies must be market-orientated. There must be markets for products and energy.Keywords : municiple solid waste management, economic orientation of waste

2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Aftab Ahmed ◽  
Arshad Hussain ◽  
Shehdev Thahrani ◽  
Sultan Ahmed ◽  
Abdul Qadeer Khoso ◽  
...  

The environmental protection agency shows that the solid waste management of Karachi city lies in the underdeveloped category. Organics, paper, plastics, bread, metals, bones, textile and many other components are key in this area. The current methods for disposing of solid waste in cities, land-filling and other schemes are compared. Energy crises and solid waste at this large scale has forced cities to the edges of collapsing. Still, it is feasible to convert this huge problem into a profitable business. With the exception of dumping or burning, waste can be used to produce energy. Through bio-chemical and thermo-chemical processes, almost 0.01% of the total energy demand can be reproduced from the waste mentioned above. There is a need to promote the production of energy from solid waste and the utilization of different wastes in a useful manner. Instead of using ineffective waste management schemes, proper waste management schemes can solve both problems at the same time. A huge amount of revenue can be generated from Karachi solid waste, but all this depends upon awareness and suitable technology. The focus of this paper is to emphasize the importance of recycling and energy. The choice of proper methods for treatment, fermentation, anaerobic digestion and the reasons for properly operating all solid waste management bodies are discussed in detail in this study. The Decision support System tool and its importance is also discussed in terms of the field of solid waste choice makers.


2021 ◽  
Author(s):  
Giacomo Di Foggia ◽  
Massimo Beccarello

After having divided waste management cost in its cost items, we focus on how well-known exogenous and endogenous drivers impact on such cost items. To this end, we collected empirical data of 6,616 Italian municipalities for a two-year period. We develop four regression-based models to analyze the data according to cost items. Models are also reiterated using different data normalization: cost per ton of waste or waste per capita. Besides exogenous determiners of cost, such as altitude, population density, and coastal zone, results refer to both unsorted and sorted waste management cost items. In this respect economies of scale are confirmed along with the critical role of adequate waste facilities that play a remarkable role in cost minimization. Policymakers and regulators may benefit from such results when it comes to define allowed revenues and design the scope of municipal solid waste regulation.


2017 ◽  
Vol 35 (9) ◽  
pp. 923-934 ◽  
Author(s):  
Michael A Nwachukwu ◽  
Mersky Ronald ◽  
Huan Feng

In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment–reuse–storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.


Author(s):  
Raymond H. Schauer ◽  
Joseph Krupa

Created in 1978, the Solid Waste Authority of Palm Beach County (Authority) has developed an “award winning” solid waste management system that includes franchised solid waste collections and the following facilities to service the residents and businesses in Palm Beach County, Florida: • North County Resource Recovery Facility (NCRRF); • Residential and Commercial Recovered Materials Processing Facility; • Five Transfer Stations; • Class I Landfill; • Class III Landfill; • Biosolids Pelletization Facility; • Ferrous Processing Facility; • Woody Waste Recycling Facility; • Composting Facility; and • Household Hazardous Waste Facility. The Authority has proactively planned and implemented its current integrated solid waste management program to ensure disposal capacity through 2021. However, like many communities, the Authority anticipates continued population growth and associated new development patterns that will significantly increase demands on its solid waste system, requiring it to reevaluate and update its planning to accommodate future growth. The NCRRF, the Authority’s refuse derived fuel waste-to-energy facility, has performed very well since its start up in 1989 processing over 13 million tons of MSW, saving valuable landfill space and efficiently producing clean, renewable energy. As the NCRRF approached the end of its first 20 year operating term, it became necessary to complete a comprehensive refurbishment to ensure its continued reliable service for a second 20 year term and beyond providing for continued disposal capacity and energy production for the Authority’s customers. The Authority renegotiated and extended its operating agreement with the Palm Beach Resource Recovery Corporation (PBRRC), a Babcock & Wilcox Company, for an additional 20-year term. The Authority selected BE&K Construction Company (BE&K) and entered into an Engineering, Procurement, and Construction contract (EPC Contract) to perform the refurbishment. The Authority, with assistance from its Consulting Engineer, Malcolm Pirnie, Inc., developed the minimum technical requirements and negotiated the EPC Contract with BE&K. The design and procurement efforts were completed in early 2009 and on-site construction refurbishment activities commenced in November 2009. The refurbishment has a total estimated cost of $205 million. The refurbishment work is sequenced with the intent that one boiler train will remain operational to reduce the impact to the Authority’s landfill and maximize electrical production and revenues during the refurbishment period. This presentation will focus on the improvements to operations as a result of the refurbishment and its positive effects on the Authority’s integrated solid waste management system.


Author(s):  
Cody Taylor ◽  
Emily Bedwell ◽  
Amy Guy ◽  
David Traeger

As awareness regarding the potential threat of climate change has grown in the US, many local governments and businesses are being asked to consider the climate implications of their actions. In addition, many leaders, including solid waste managers, who are not yet pressured from the outside, consider it prudent to account for their greenhouse gas (GHG) emissions and consider it a proactive measure to assess climate risks and opportunities and to show commitment to progress. Sources of GHG emissions in the solid waste management process include: waste transport vehicles, composting facilities, processing equipment, landfills, and waste-to-energy facilities. Over the past 25 years, the levels of GHG emissions have been reduced through technological advancements in waste-to-energy, environmental regulations such as the Clean Air Act, landfill gas capture and control, and the promotion of recycling and reuse. There are many opportunities for solid waste managers to further reduce their GHG emissions levels, including promotion of waste-to-energy facilities as part of a low-carbon solid waste management plan. Waste-to-energy may also, in the future, offer potential revenue from the sale of renewable energy credits and carbon credits in emerging emissions trading programs.


Sign in / Sign up

Export Citation Format

Share Document