scholarly journals Influence of Nd:YAG Laser Energy on Mechanical properties of Nitriding Steel

2020 ◽  
Vol 23 (2) ◽  
pp. 187-193
Author(s):  
Ansam Abdul Jabbar Aziz ◽  
Enass A. Khalid ◽  
Abbas S. Alwan

Desired mechanical properties like microstructure, micro hardness and wear resistance are the key parameters for which low carbon steel (AISI 1006) are widely selected. Surface heat treatment applied to improve these properties; traditionally surface heat treatments like induction hardening, in recent time’s laser surface hardening. In this work, thermochemical treatment (liquid nitriding) by using mixture from 61% NaCN, 15% K2CO3 and 24% KCL and followed by Nd:YAG laser surface treatment was done . The laser parameter were energy (0.89, 2, 4 and 9) J, spot diameter (0.790 ,0.33, 0.283 and 0.224) mm, pulses duration (1, 2.33, 4.47 and 9.87) ms with  fix wavelength 1604nm. Laser surface treatment cycle was melting the layer surface, holding and rapid cooling in air medium.  Optical microscopy (OM) and scanning electron microscope (SEM) has been used to study the microstructures and cross-sectional of molted and heat affected zones respectively. The wear test was done to measure the wear rate by using pin -on-disk principles were satisfied. The result shown that increasing in laser energy effects to increase in the area of melted and heat affected zones of nitriding steel. Also increasing in laser energy led to increase micro hardness about 61%, while wear rate decrease about 40 % and increased depth of molted zone.

2020 ◽  
Vol 844 ◽  
pp. 97-103
Author(s):  
Omar Fadhilh Abdullah ◽  
Orass Abdulhadi Hussein ◽  
Emad Toma Karash

This research aimed to prepare (Fe-Ni) alloy by powder technology method for its technological and commercial importance. Iron and Nickel powders were tacking then their powders mixed and blended together with percent (63% Fe-37% Ni), then the powders compacted isostatic cold pressure at (6 ton). Laser surface treatment was done for the samples with different energies (0, 200, 260, 300) mJ and pulse time (10 sec) At a distance (100 cm). The X-ray diffractions test indicated that all samples have Face Center Cubic (F.C.C), and the samples at 300 mJ has best properties which include increase of phases intensity and decrease of grain size according to Debye-Scherrer equation. The Atomic Force Microscope (AFM) also shows better properties with increase laser energy. Where increased soft-ness of surface, homogeneity surface and decrease in grain size with increase laser energy. The laser analysis resulted that melting all surface molecules which led to improvement in the structural properties.


2017 ◽  
Vol 4 (5) ◽  
pp. 5973-5978
Author(s):  
Eva Tillova ◽  
Maria Chalupova ◽  
Lenka Kucharikova ◽  
Denisa Zavodska ◽  
Juraj Belan

2020 ◽  
Vol 46 (17) ◽  
pp. 27822-27831
Author(s):  
Bruno Henriques ◽  
Nathalia Hammes ◽  
Júlio C.M. Souza ◽  
Mutlu Özcan ◽  
Joana Mesquita-Guimarães ◽  
...  

2005 ◽  
Vol 200 (7) ◽  
pp. 2181-2186 ◽  
Author(s):  
Zhenqing Zhao ◽  
Chunqing Wang ◽  
Mingyu Li ◽  
Lei Wang

2010 ◽  
Vol 504 ◽  
pp. S45-S47 ◽  
Author(s):  
Bingqing Chen ◽  
Shujie Pang ◽  
Peipei Han ◽  
Yan Li ◽  
Alain R. Yavari ◽  
...  

Author(s):  
Omar Fadhil Abdullah ◽  
Orass Abdulhadi Hussein ◽  
Rasha Wael Koleab

This research aimed to prepare iron-nickel alloys via powder technology, because this technology has its physical and commercial importance. Fe and Ni powders were blended into a mixture that was 63% Fe and 37% Ni and then compacted under 6 tons of isostatic cold pressure. Iron and nickel powders were used as tacking mixed together (63% of iron and 37% of nickel), and then compacted isostatic cold pressure at 6 tons. Laser surface treatment was done to samples with different energies (0, 200, 260, and 300 mJ) at a pulse time of 10 seconds and a distance of 100 cm. The x-ray diffraction test indicated that all samples had face-centered cubic, and according to the Debye-Scherrer equation. the 300 mJ sample had the best properties, including increased phase intensity and decreased grain size. The atomic force microsope showed that increasing laser energy also decreased grain size and increased surface softness and homogeneity. laser treatment results indicated an improved in structural properties with increased laser energy, Laser analysis revealed that melting all surface molecules improved structural properties. Specifically, the last treatment (300 mJ) acheaved the best structural properties of the alloy.


Sign in / Sign up

Export Citation Format

Share Document