scholarly journals Preparation and Characterization of (Biopolymer blend-PbO2) Nanocomposites For Gamma Ray Shielding Applications

Author(s):  
Abdulameer Khalaf Arat

In the present work, nanocomposites of polyvinyl pyrrolidone (PVP), carboxymethyl cellu- lose (CMC) and lead oxide nanoparticles (PbO2) have been prepared to use for gamma ray shielding applications. The nanocomposites have been prepared by casting technique. The lead oxide nanoparticles were added to the mixture of (PVP 55 wt.% and CMC 45 wt.%) with different concentrations are (0,1.5,3 and 4.5) wt.%. The D.C electrical conductivity and optical properties of nanocomposites were studied. The experimental results showed that the D.C electrical conductivity increases with increase the lead oxide nanoparticles concentrations. The absorbance and optical constants increase with the increase of PbO2 concentrations but the energy band gap decreases with the increase of PbO2 concentrations. The results of (polyvinyl pyrrolidone, carboxymethyl cellulose and lead oxide nanoparticles) nanocomposites application for gamma ray shielding showed that the (PVP-CMC-PbO2) nanocomposite have high linear attenuation coefficients for Cs-137 gamma ray sources.

2019 ◽  
Vol 64 (2) ◽  
pp. 157 ◽  
Author(s):  
A. Hashim ◽  
K.H.H. Al-Attiyah ◽  
S. F. Obaid

Low-cost polymer nanocomposites prepared for the nuclear radiation shielding have highly linear attenuation coefficients, light weight, and elastic, good mechanical, optical, and dielectric properties. The carboxymethyl cellulose (CMC)–polyvinyl pyrrolidone (PVP) polymeric blend is prepared with concentrations: 60 wt.% CMC and 40 wt.% PVP. The lead oxide nanoparticles are added to the CMC–PVP blend with different concentrations: 0, 2, 4, 6, and 8 wt.%. The structural and optical properties of (CMC–PVP–PbO2) nanocomposites are studied. The results show that the absorbance of the (CMC–PVP) blend increases and the energy band gap decreases, as the concentration of PbO2 nanoparticles increases. The optical constants of the (CMC–PVP) blend increase with the concentration of lead oxide nanoparticles. The (CMC–PVP–PbO2) nanocomposites have highly linear attenuation coefficients for gamma radiation.


2018 ◽  
Vol 7 (4) ◽  
pp. 547-551
Author(s):  
Dalal Hassan ◽  
Ahmed Hashim

Piezoelectric materials have been prepared from (poly-methyl methacrylate-lead oxide) nanocomposites for electronic applications. The lead oxide nanoparticles were added to poly-methyl methacrylate by different concentrations are (4, 8, and 12) wt%. The structural and dielectric properties of nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of nanocomposites decrease with increase in frequency of applied electric field. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of poly-methyl methacrylate increase with increase in lead oxide nanoparticles concentrations. The results of pressure sensor showed that the electrical resistance of (PMMA-PbO2) nanocomposites decreases with increase in pressure.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Wasan A. Al-Taa’y ◽  
Saad F. Oboudi ◽  
Emad Yousif ◽  
Mohammed Abdul Nabi ◽  
Rahimi M. Yusop ◽  
...  

Films of PMMA and PMMA doped with NiCl2with different contents were prepared using the casting technique. The optical properties of all films were investigated using spectrophotometric measurements of absorbance and transmittance in the wavelength range 200–800 nm. The change of the calculated values of the optical energy gaps with increasing NiCl2content has been interpreted in terms of the structural modifications of the PMMA matrix. The optical energy gap decreased from 3.6 to 3.05 eV with increasing the NiCl2concentration to 0.4%. The effect of doping on the optical constants of films such as refractive index, extinction coefficient, real and imaginary parts of dielectric constant, optical conductivity, and skin depth has been reported. All these constants were increased with increasing NiCl2concentration with the exception of skin depth which is different result.


2021 ◽  
Vol 11 (7) ◽  
pp. 3035
Author(s):  
H. O. Tekin ◽  
Shams A. M. Issa ◽  
G. Kilic ◽  
Hesham M. H. Zakaly ◽  
N. Tarhan ◽  
...  

This study aimed to perform an extensive characterization of a 74.75TeO2–0.25V2O5–(25 − x)B2O3-xNd2O3 glass system with (x = 0, 0.5, 1.0, and 1.5 mol%) for radiation shielding properties. Linear and mass attenuation coefficients were determined using Phy-X PSD software and compared with the simulation using Monte Carlo software MCNPX (version 2.7.0). Half value layer, mean free path, tenth value layer, effective atomic number, exposure buildup factor, and energy absorption buildup factors of VTBNd0.0, VTBNd0.5, VTBNd1.0, and VTBNd1.5 glasses were determined, respectively. The results showed that boron (III) oxide and neodymium (III) oxide substitution has an obvious impact on the gamma ray attenuation properties of the studied glasses. It can be concluded that the VTBNd1.5 sample with the highest content of neodymium (III) oxide (1.5 mol%) is the superior sample for shielding of gamma radiation in the investigated energy range.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Nur Munirah Abdullah ◽  
Anika Zafiah Mohd Rus ◽  
M. F. L. Abdullah

The synthesis and characterization of waterborne polyurethane-based oxidized graphite- (WPUG-) reinforced composites is disclosed. The morphology-structure relations of WPUG composites are studied using field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectroscopy. Prior to this, it is confirmed that, in the WPUG composites, the graphite particles containing functional groups such as hydroxyl and carboxylic groups are randomly distributed and attributed to the formation of interconnected interface within the polymeric composites. This promotes enhancement in modulus and tensile strength up to ∼440% and ∼100%, respectively. Significantly, these results were correlated with viscoelastic properties in which the composites show positive response to graphite addition. Further studies in optical properties consequently attribute decreasing values in optical energy band gap (Eg) which afterwards took the leads to electrical conductivity (σ). Aptly, the composites WPUG20, WPUG25, and WPUG30 were found to possess favorable electrical conductivity through the two-point probe method. This revealed the improvement in electrical properties with promising potential as alternative petroleum-based composites to generate energy from the renewable resources and also apply greener ways for energy consumption.


Sign in / Sign up

Export Citation Format

Share Document