scholarly journals Synergetic model of the wave abrasive‑fatigue wear of rubber lining in the ball‑tube mills

Author(s):  
A.F. Bulat ◽  
V.I. Dyrda ◽  
Ye.V. Kalhankov
2019 ◽  
pp. 103-110
Author(s):  
A.S. Kobets ◽  
◽  
V.I. Dyrda ◽  
Ye.V. Kalhankov ◽  
I.M. Tsanidi ◽  
...  

Wear ◽  
2021 ◽  
pp. 203978
Author(s):  
Ruijie Zhang ◽  
Chunlei Zheng ◽  
Chen Chen ◽  
Bo Lv ◽  
Guhui Gao ◽  
...  

Author(s):  
Shashikant Pandey ◽  
Muniyappa Amarnath

Rolling-element bearings are the most commonly used components in all rotating machinery. The variations in the operating conditions such as an increase in the number of operating cycles, load, speed, service temperature, and lubricant degradation result in the development of various defects such as pitting, spalling, scuffing, scoring, etc. The defects that appeared on rolling contact surfaces cause surface deterioration and change in the vibration and sound levels of the bearing system. The present experimental investigations are aimed at assessing the surface fatigue wear that appears on the contact surfaces of roller bearings. The studies considered the estimation of specific film thickness, analysis of surface fatigue wear developed on the rolling-element surfaces, surface roughness analysis, grease degradation analysis using Fourier transform infrared radiation, and vibration and sound signal measurement and analysis. The results obtained from the experimental investigation provide a good correlation between surface wear, vibration, and sound signals with a transition in the lubrication regimes in the Stribeck curve.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenyu Tang ◽  
Xinyi Zhao ◽  
Hui Wang

Abstract Background The present study aimed to quantitate the wear of the highly transparent Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramic monolithic zirconia crown on the enamel in vivo and discuss the prone position of the wear and the underlying mechanism. Methods A total of 43 patients with 43 posterior teeth were selected for full zirconia crown restoration and examined immediately, at 6 months, and at 1 year after restoration. During the follow-up visit, the fine impression of the patients’ monolithic zirconia crowns, the antagonist teeth, the corresponding contralateral natural teeth, the super plaster cast, and epoxy resin model was ontained. The model of epoxy resin was observed under a stereo microscope, and the microstructure parts were observed under a scanning electron microscope. Results After 1 year, the mean depth and volume of wearing of the monolithic zirconia crown were the smallest (all P < 0.01), while those of the antagonist teeth were significantly larger than those of the natural teeth (P < 0.0001), and no significant difference was found among the natural teeth (P = 0.3473, P = 0.6996). The amount of wear after one year was remarkably higher than that at 6 months (P < 0.0001). The microscopic observation revealed the tendency of wearing of the monolithic zirconia crown on the antagonist teeth at the protruding early contact points. Electron micrographs of tooth scars showed that the wearing mechanism of the monolithic zirconia crown on natural teeth was mainly abrasive and fatigue wear. Conclusions Although the self-wearing is insignificant, the monolithic zirconia crown can cause wear of the antagonist teeth via occlusal or early contact significantly; the amount of wearing is higher than that of natural teeth and increases over time. The wearing mechanism is mainly abrasive and fatigue wear.


2013 ◽  
Vol 372 ◽  
pp. 507-511
Author(s):  
Hitonobu Koike ◽  
Kenji Kanemasu ◽  
Kiyoto Itakura ◽  
Shota Okazaki ◽  
Masahiro Takamiya ◽  
...  

In this work, wear of reinforced poly-ether-ether-ketone (PEEK) polymer bushes in friction against 7075 aluminium alloy cam plates or titanium crankshafts is investigated in order to establish the application possibilities in transmission parts in humanoid robot joints under high load torque. The PEEK bush wear requires close examination as well as the input axis-output axis transmission error (backlash). Sliding wear tests were performed on bushes under 4000 kgfcm (392 Nm) load torque, while the cam plate oscillated in the humanoid robot leg joint evaluation system. The robot joint using PEEK bush achieved quite small backlash after the fatigue wear test.


2016 ◽  
Vol 33 (1) ◽  
pp. 114-120 ◽  
Author(s):  
W. S. Yang ◽  
T. Zhou ◽  
Z. J. Zhu ◽  
J. Li ◽  
Z. K. Chen ◽  
...  
Keyword(s):  

Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


Sign in / Sign up

Export Citation Format

Share Document