scholarly journals Review of semi-active suspension based on Magneto-rheological damper

2021 ◽  
Vol 2 (2) ◽  
pp. 38-51
Author(s):  
MUSABYIMANA Josee
2003 ◽  
Author(s):  
Andrea C. Wray ◽  
Francis B. Hoogterp ◽  
Scott Garabedian ◽  
Eric Anderfaas ◽  
Brian Hopkins

2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.


Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


2013 ◽  
Vol 464 ◽  
pp. 229-234 ◽  
Author(s):  
Bruno Sousa Carneiro da Cunha ◽  
Fábio Roberto Chavarette

In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.


Author(s):  
Amit Shukla

Design of active suspension systems is well known, however the notion of control bifurcations for the design of such systems has been introduced recently. A nonlinear active suspension system consisting of a magneto-rheological damper is analyzed in this work. It is well known that a parameterized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parameterized nonlinear system typically happens because some eigenvalues of the parameterized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The qualitative change in the equilibrium point can be characterized by investigating the projection of the flow on the center manifold. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. In this work the control bifurcations of a magneto-rheological fluid based active suspension system is analyzed. Some parametric results are presented with suggestions on how to design nonlinear control based on the parametric control bifurcation analysis as applied to the design of an active suspension system.


Sign in / Sign up

Export Citation Format

Share Document